Page 5 of 6
ACS Catalysis
Am. Chem. Soc. 2018, 140, 15596–15600. (h) Neumann, K. T.;
Zhang, T.; Wang, N.-X.; Xing, Y. Advances in Decarboxylative
Oxidative Coupling Reaction. J. Org. Chem. 2018, 83, 7559–7565.
(13) This work was funded by the European Research Council (ERC-
PoC-2016-755251) and presented at the 2018-Hirata Award
Symposium. While this manuscript was under preparation, Baran and
Audisio reported a related decarboxylation event; in the former, alkyl
carboxylic acids could only be employed, invariably requiring
stoichiometric Ni species, whereas the latter made use of benzoic acids
under harsh conditions. See: (a) Kingston, C.; Wallace, M. A.;
Allentoff, A. J.; Degruyter, J. N.; Chen, J. S.; Gong, S. X.; Bonacorsi,
S.; Baran, P. S. Direct Carbon Isotope Exchange through
Decarboxylative Carboxylation. J. Am. Chem. Soc. 2019, 141, 774–
779. (b) Destro, G.; Loreau, O.; Marcon, E.; Taran, F.; Cantat, T.;
Audisio, D. Dynamic Carbon Isotope Exchange of Pharmaceuticals
with Labeled CO2. J. Am. Chem. Soc. 2019, 141, 780–784.
(14) For selected references: (a) León, T.; Correa, A.; Martin, R. Ni-
Catalyzed Direct Carboxylation of Benzyl Halides with CO2. J. Am.
Chem. Soc. 2013, 135, 1221–1224. (b) Moragas, T.; Cornella, J.;
Martin, R. Ligand-Controlled Regiodivergent Ni-Catalyzed Reductive
Carboxylation of Allyl Esters with CO2. J. Am. Chem. Soc. 2014, 136,
17702–17705. (c) Juliá-Hernández, F.; Moragas, T.; Cornella, J.;
Martin, R. Remote Carboxylation of Halogenated Aliphatic
Hydrocarbons with Carbon Dioxide. Nature 2017, 545, 84–88. (d)
Börjesson, M.; Moragas, T.; Martin, R. Ni-Catalyzed Carboxylation of
Unactivated Alkyl Chlorides with CO2. J. Am. Chem. Soc. 2016, 138,
7504–7507. (e) Van Gemmeren, M.; Börjesson, M.; Tortajada, A.; Sun,
S. Z.; Okura, K.; Martin, R. Switchable Site-Selective Catalytic
Carboxylation of Allylic Alcohols with CO2. Angew. Chem. Int. Ed.
2017, 56, 6558–6562. (f) Tortajada, A.; Ninokata, R.; Martin, R. Ni-
Catalyzed Site-Selective Dicarboxylation of 1,3-Dienes with CO2. J.
Am. Chem. Soc. 2018, 140, 2050–2053.
Donslund, A. S.; Andersen, T. L.; Nielsen, D. U.; Skrydstrup, T.
Synthesis of Aliphatic Carboxamides Mediated by Nickel NN2 -Pincer
Complexes and Adaptation to Carbon-Isotope Labeling. Chem. Eur. J.
2018, 24, 14946–14949.
1
2
3
4
5
6
7
8
(7) For recent advances in mass spectrometry see: (a) Elmore, C. S.;
Bragg, R. A. Isotope Chemistry; A Useful Tool in the Drug Discovery
Arsenal. Bioorganic Med. Chem. Lett. 2015, 25, 167–171. (b) Ma, S.;
Chowdhury, S. K. The Use of Stable Isotope-Labeled Drug as
Microtracers with Conventional LC–MS/MS to Support Human
Absolute Bioavailability Studies: Are We There Yet? Bioanalysis
2016, 8, 731–733. (c) Kim, I. Y.; Suh, S. H.; Lee, I. K.; Wolfe, R. R.
Applications of Stable, Nonradioactive Isotope Tracers in in Vivo
Human Metabolic Research. Exp. Mol. Med. 2016, 48, e203. For recent
advances in 13C DNP (Dynamic Nuclear Polarization) MRI see: (d)
Rizi, R. R. A New Direction for Polarized Carbon-13 MRI. Proc. Natl.
Acad. Sci. 2009, 106, 5453–5454. (e) Brindle, K. M. Imaging
Metabolism with Hyperpolarized 13C-Labeled Cell Substrates. J. Am.
Chem. Soc. 2015, 137, 6418–6427. (f) Capozzi, A.; Patel, S.;
Gunnarsson, C. P.; Marco-Rius, I.; Comment, A.; Karlsson, M.;
Lerche, M. H.; Ouari, O.; Ardenkjaer-Larsen, J. H. Efficient
Hyperpolarization of U- 13 C-Glucose Using Narrow-Line UV-
Generated Labile Free Radicals. Angew. Chem. Int. Ed. 2019, 58,
1334–1339. (g) Orlando, T.; Dervişoğlu, R.; Levien, M.; Tkach, I.;
Prisner, T. F.; Andreas, L. B.; Denysenkov, V. P.; Bennati, M. Dynamic
Nuclear Polarization of 13C Nuclei in the Liquid State over a 10 Tesla
Field Range. Angew. Chem. Int. Ed. 2019, 58, 1402–1406.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) Maag, H. Prodrugs of Carboxylic Acids. In Prodrugs; Springer
New York: New York, NY, 2007; pp 703–729.
(9) (a) Bragg, R. A.; Sardana, M.; Artelsmair, M.; Elmore, C. S. New
Trends and Applications in Carboxylation for Isotope Chemistry. J.
Label. Compd. Radiopharm. 2018, 61, 934–948. (b) Hanson, J. R. The
Organic Chemistry of Isotopic Labelling; Royal Society of Chemistry,
2011. (c) Voges, R.; Heys, J. R.; Moenius, T. Preparation of
Compounds Labeled with Tritium and Carbon-14; John Wiley & Sons,
Ltd: Chichester, UK, 2009.
(10) For selected reviews on carboxylation reactions using CO2 see: (a)
Yu, D.; Teong, S. P.; Zhang, Y. Transition Metal Complex Catalyzed
Carboxylation Reactions with CO2. Coord. Chem. Rev. 2015, 293–
294, 279–291. (b) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R.
Metal-Catalyzed Carboxylation of Organic (Pseudo)Halides with CO2.
ACS Catal. 2016, 6, 6739–6749. (c) Tortajada, A.; Juliá-Hernández, F.;
Börjesson, M.; Moragas, T.; Martin, R. Transition-Metal-Catalyzed
Carboxylation Reactions with Carbon Dioxide. Angew. Chem. Int. Ed.
2018, 57, 15948–15982, d) Chen, Y. –G.; Xu, X. –T.; Zhang, K.; Li,
Y. –Q.; Zhang, L. –P.; Fang, P.; Mei, T. –S. Transition-Metal-
Catalyzed Carboxylation of Organic Halides and Their Surrogates with
Carbon Dioxide. Synthesis 2018, 50, 35–48.
(11) For selected references: (a) Kabalka, G. W.; Varma, R. S. The
Synthesis of Radiolabeled Compounds via Organometallic
Intermediates. Tetrahedron 1989, 45, 6601–6621. (b) McCarthy, K. E.
Recent Advances in the Design and Synthesis of Carbon-14 Labelled
Pharmaceuticals from Small Molecule Precursors. Curr Pharm Des
2000, 6, 1057–1083. (c) Seidel, D.; Pleiß, U. Labelling of the Guanylate
Cyclase Activator Cinaciguat (BAY 58-2667) with Carbon-14, Tritium
and Stable Isotopes. J. Label. Compd. Radiopharm. 2010, 53, 130–139.
(d) Elmore, C. S.; Bragg, R. A. Isotope Chemistry; A Useful Tool in
the Drug Discovery Arsenal. Bioorganic Med. Chem. Lett. 2015, 25,
167–171. (e) Sandell, J. Carbon-14 Radiosynthesis of the Benzofuran
Derivative and β -Amyloid Plaque Neuroimaging Positron Emission
Tomography Radioligand AZD4694. J. Label. Compd. Radiopharm.
2013, 56, 321–324.
(15) See supporting information for further details.
(16) For selected references in which substituents adjacent to the
nitrogen atom in these ligands led to an improve catalytic activity: (a)
Liu, Y.; Cornella, J.; Martin, R. Ni-Catalyzed Carboxylation of
Unactivated Primary Alkyl Bromides and Sulfonates with CO2. J. Am.
Chem. Soc. 2014, 136, 11212–11215. (b) Nogi, K.; Fujihara, T.; Terao,
J.; Tsuji, Y. Cobalt- and Nickel-Catalyzed Carboxylation of Alkenyl
and Sterically Hindered Aryl Triflates Utilizing CO2. J. Org. Chem.
2015, 80, 11618–11623. (c) Moragas, T.; Gaydou, M.; Martin, R.
Nickel-Catalyzed Carboxylation of Benzylic C-N Bonds with CO2.
Angew.Chem. Int. Ed. 2016, 55, 5053–5057. (d) He, Y.; Cai, Y.; Zhu,
S. Mild and Regioselective Benzylic C – H Functionalization: Ni-
Catalyzed Reductive Arylation of Remote and Proximal Olefins. J. Am.
Chem. Soc. 2017, 139, 8–11. (e) Peng, L.; Li, Y.; Li, Y.; Wang, W.;
Pang, H.; Yin, G. Ligand-Controlled Nickel-Catalyzed Reductive
Relay Cross-Coupling of Alkyl Bromides and Aryl Bromides. ACS
Catal. 2018, 8, 310–313. (f) Zhou, F.; Zhang, Y.; Xu, X.; Zhu, S. NiH-
Catalyzed Remote Asymmetric Hydroalkylation of Alkenes with
Racemic α-Bromo Amides. Angew. Chem. Int. Ed. 2019, 58, 1754–
1758, g) Ma, C.; Zhao, C.–Q.; Xu, X. –T.; Li, Z. –M.; Wang, X. –Y.;
Zhang, K.; Mei, T. –S. Nickel-Catalyzed Carboxylation of Aryl and
Heteroaryl Fluorosulfates Using Carbon Dioxide. Org. Lett. 2019, 21
(7), 2464–2467, h) Jiao, K. –J.; Li, Z. –M.; Xu, X. –T.; Zhang, L. –P.;
Li, Y. –K.; Zhang, K.; Mei, T. –S. Palladium-catalyzed reductive
electrocarboxylation of allyl esters with carbon dioxide. Org. Chem.
Front. 2018, 5, 2244.
(17) (a) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. Nickel-
Catalyzed Carboxylation of Aryl and Vinyl Chlorides Employing
Carbon Dioxide. J. Am. Chem. Soc. 2012, 134, 9106–9109. (b)
Charboneau, D. J.; Brudvig, G. W.; Hazari, N.; Lant, H. M. C.;
Saydjari, A. K. Development of an Improved System for the
Carboxylation of Aryl Halides through Mechanistic Studies. ACS
Catal. 2019, 9, 3228–3241. (c) Ref. 14d.
(18) Metal-Catalyzed Cross-Coupling Reactions and More; de
Meijere, A., Bräse, S., Oestreich, M., Eds.; Wiley-VCH Verlag GmbH
& Co. KGaA: Weinheim, Germany, 2014.
(12) For selected reviews on decarboxylative coupling reactions see:
(a) Rodríguez, N.; Goossen, L. J. Decarboxylative Coupling Reactions:
A Modern Strategy for C–C-Bond Formation. Chem. Soc. Rev. 2011,
40, 5030, b) Patra, T.; Maiti, D. Decarboxylation as the Key Step in
C−C Bond-Forming Reactions. Chem. Eur. J. 2017, 23, 7382–7401. (c)
ACS Paragon Plus Environment