J.-C. Cintrat et al. / Tetrahedron Letters 42 (2001) 5001–5003
5003
derivatives to eliminate the risk of a partial metallation
step (Scheme 3).
G. J. Org. Chem. 1996, 61, 8771–8774; (b) Rasset, C.;
Rousseau, B. J. Label. Compounds Radiophar. 1994, 6,
523–528; (c) Zippi, E. M.; Andres, H.; Morimoto, H.;
Williams, P. G. Synth. Commun. 1994, 24, 1037–1044;
(d) Jaiswal, D. K.; Andres, H.; Morimoto, H.;
Williams, P. G. J. Chem. Soc., Chem. Commun. 1993,
907–909.
As shown in Table 1 (entries 1–3), the method is highly
efficient (isotopic enrichment up to 100%). In terms of
our initial aim (no synthetic derivative needed) it is
simple to start from the target compound, abstract a
proton regioselectively and replace it by its isotope
(entries 5–12). The methodology is quite powerful and
general since aromatic (entries 4–7), benzylic (entry 8),
acetylenic (entry 9) and aliphatic positions (entries 10–
12) have been labeled.
2. Shu, A. Y. L.; Heys, J. R. Tetrahedron Lett. 2000, 41,
9015–9019.
3. Brewer, J. R.; Jones, J. R.; Lawrie, K. W. M.; Saun-
ders, D.; Simmonds, A. J. Label. Compounds Radio-
phar. 1994, 4, 391–400.
4. Brewer, J. R.; Garnes, K. T.; Levinson, S. H.; Saun-
ders, D.; Simmonds, A. J. Label. Compounds Radio-
phar. 1994, 8, 787–794.
In conclusion, this methodology seems very promising
because of its general applicability (access to a wide
range of labeled compounds in a regiospecific fashion).
The only limitation is the metallation process which
requires acidic protons with a pKa above 18. Due to the
easy deuterodehalogenation of 9-bromo-9-phenylfluor-
ene, this approach should be easily transposable to
tritium. This should enable most standard chemistry
laboratories to synthesize tritiated molecules simply and
safely.
5. Kolbe, A.; Schneider, B.; Voigt, B.; Adam, G. J. Label.
Compounds Radiophar. 1998, 2, 131–137.
6. Ciszewska, G.; Pfefferkorn, H.; Tang, Y. S.; Jones, L.;
Tarapata, R.; Sunay, U. B. J. Label. Compounds Radio-
phar. 1997, 8, 651–668.
7. Seltzman, H. H.; Odear, D. F.; Carroll, F. I; Wyrick,
C. D. J. Chem. Soc., Chem. Commun. 1992, 1757–1758.
8. Schlosser, M.; Limat, D. J. Am. Chem. Soc. 1995, 117,
12342–12343.
9. Bordwell, F. G.; Drucker, G. E.; Andersen, N. H.;
Denniston, A. D. J. Am. Chem. Soc. 1986, 108, 7310–
7313.
Acknowledgements
10. Azran, J.; Shimoni, M.; Buchman, O. J. Catal. 1994,
148, 648–653.
The authors are grateful to Dr. Eric Doris for stimulat-
ing discussions.
11. Deuterium incorporation was measured by integration
of the respective 1H NMR signals and by referring to
the signal of another proton or group of protons
within the molecule as internal standard. 1H Spectra of
labeled compounds were in full agreement with those of
the starting materials.
References
1. (a) Than, C.; Morimoto, H.; Andres, H.; Williams, P.
.