7052 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 22
Letters
RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer
Res. 2003, 63, 1454–1457.
30 (mg/kg)/day; however, in the 100 mg/kg/day group there
was an average 10% body weight loss and one mortality. The
compound showed time dependent inhibition of pERK consistent
with inhibition of B-RafV600E in tumors (Figure 3B). On the
other hand, as this compound has similar profile as 23, we cannot
discount the contribution of VEGFR/other kinase inhibition to
efficacy. These data simply demonstrate the efficacy of the
novel, orally active 2-aminobenzimidazole 27 in human col-
orectal xenografts.
In conclusion, we developed a novel series of potent Raf
inhibitors that significantly improved the solubility compared
to the urea 1. In addition, favorable pharmacokinetics was
demonstrated for 18 and 27, which was indicative of the series.
Further work on this scaffold to improve the inhibition of
cellular proliferation and Erk phosphorylation was done to
identify compound Raf-265, which is in phase I clinical trials
with results to be communicated in due course.
(9) Brose, M. S.; Volpe, P.; Feldman, M.; Kumar, M.; Rishi, I.; Gerrero,
R.; Einhorn, E.; Herlyn, M.; Minna, J.; Nicholson, A.; Roth, J. A.;
Albelda, S. M.; Davies, H.; Cox, C.; Brignell, G.; Stephens, P.; Futreal,
P. A.; Wooster, R.; Stratton, M. R.; Weber, B. L. BRAF and RAS
mutations in human lung cancer and melanoma. Cancer Res. 2002,
62, 6997–7000.
(10) Smith, R. A.; Barbosa, J.; Blum, C. L.; Bobko, M. A.; Caringal, Y. V.;
Dally, R.; Johnson, J. S.; Katz, M. E.; Kennure, N.; Kingery-Wood,
J.; Lee, W.; Lowinger, T. B.; Lyons, J.; Marsh, V.; Rogers, D. H.;
Swartz, S.; Walling, T.; Wild, H. Discovery of heterocyclic ureas as
a new class of raf kinase inhibitors: identification of a second
generation lead by a combinatorial chemistry approach. Bioorg. Med.
Chem. Lett. 2001, 11, 2775–2778.
(11) Khire, U. R.; Bankston, D.; Barbosa, J.; Brittelli, D. R.; Caringal, Y.;
Carlson, R.; Dumas, J.; Gane, T.; Heald, S. L.; Hibner, B.; Johnson,
J. S.; Katz, M. E.; Kennure, N.; Kingery-Wood, J.; Lee, W.; Liu, X.-
G.; Lowinger, T. B.; McAlexander, I.; Monahan, M.-K.; Natero, R.;
Renick, J.; Riedl, B.; Rong, H.; Sibley, R. N.; Smith, R. A.; Wolanin,
D. Omega-carboxypyridyl substituted ureas as Raf kinase inhibitors:
SAR of the amide substituent. Bioorg. Med. Chem. Lett. 2004, 14,
783–786.
(12) Wood, J. E.; Wild, H.; Rogers,D. H.; Lyons, J.; Katz, M. E.; Caringal,
Y. V.; Dally, R.; Lee, W.; Smith, R. A.; Blum, C. L. Preparation of
Urea Derivatives as raf Kinase Inhibitors. Patent Application WO
9852559, 1998.
Acknowledgment. The authors acknowledge Ahmad Hashash
and Keshi Wang for formulation and bioanalytics done on these
compounds.
(13) Lyons, J. F.; Wilhelm, S.; Hibner, B.; Bollag, G. Discovery of a novel
Raf kinase inhibitor. Endocr.-Relat. Cancer 2001, 8, 219–225.
(14) Kumar, C. C.; Madison, V. Drugs targeted against protein kinases.
Expert Opin. Emerging Drugs 2001, 6, 303–315.
(15) Wilhelm, S. M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong,
H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath,
J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane, L.; Lynch,
M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl, B.;
Post, L. E.; Bollag, G.; Trail, P. BAY 43-9006 exhibits broad spectrum
oral antitumor activity and targets the RAF/MEK/ERK pathway and
receptor tyrosine kinases involved in tumor progression and angio-
genesis. Cancer Res. 2001, 64, 7099–7109.
Supporting Information Available: Experimental details for
the synthesis and characterization of all compounds; procedure on
biochemical and cellular assay. This material is available free of
References
(1) Dumaz, N.; Marais, R. Protein kinase A blocks Raf-1 activity by
stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras.
J. Biol. Chem. 2003, 278, 29819–29813.
(16) Eisen, T.; Ahmad, T.; Flaherty, K. T.; Gore, M.; Kaye, S.; Marias,
R.; Gibebns, I.; Hackett, S.; James, M.; Schuster, L. M.; Nathanson,
K. L.; Xia, C.; Simantov, R.; Schwartz, B.; Poulin-Costello, M.;
O’Dwyer, P. J.; Ratain, M. J. Sorafenib in advanced melanoma: a
phase II randomised discontinuation trial analysis. Br. J. Cancer 2006,
95 (5), 581–586.
(2) Weber, C. K.; Slupsky, J. R.; Herrmann, C.; Schuler, M.; Rapp, U. R.;
Block, C. Mitogenic signaling of Ras is regulated by differential
interaction with Raf isozymes. Oncogene 2000, 19, 169–176.
(3) Pritchard, C. A.; Samuels, M. L.; Bosch, E.; McMahon, M. Condition-
ally oncogenic forms of the A-Raf and B-Raf protein kinases display
different biological and biochemical properties in NIH 3T3 cells. Mol.
Cell. Biol. 1995, 15, 6430–6432.
(4) Minamoto, T.; Mai, M.; Ronai, Z. e. K-ras mutation: early detection
in molecular diagnosis and risk assessment of colorectal, pancreas,
and lung cancerssa review. Cancer Detect. PreV. 2000, 24, 1–12.
(5) Yuen, S. T.; Davies, H.; Chan, T. L.; Ho, J. W.; Bignell, G. R.; Cox,
C.; Stephens, P.; Edkins, S.; Tsui, W. W.; Chan, A. S.; Futreal, P. A.;
Stratton, M. R.; Wooster, R.; Leung, S. Y. Similarity of the phenotypic
patterns associated with BRAF and KRAS mutations in colorectal
neoplasia. Cancer Res. 2002, 62, 6451–6455.
(17) Unpublished results.
(18) Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/
MEK/ERK pathway by protein interactions. Biochem. J. 2000, 351
(2), 289–305.
(19) Information on biochemical and cellular assays is included in the
Supporting Information.
(20) Wan, P. T. C.; Garnett, M. J.; Roe, S. M.; Lee, S.; Niculescu-Duvaz,
D.; Good, V. M.; Jones, C. M.; Marshall, C. J.; Springer, C. J.; Barford,
D.; Marais, R. Mechanism of activation of the RAF-ERK signaling
pathway by oncogenic mutations of B-RAF. Cell 2004, 116, 855–
867.
(21) Bankston, D.; Dumas, J.; Natero, R.; Riedl, B.; Monahan, M.-K.;
Sibley, R. A scaleable synthesis of BAY 43-9006: a potent Raf kinase
inhibitor for the treatment of cancer. Org. Process Res. DeV. 2002, 6,
777–781.
(6) Pollock, P. M.; Harper, U. L.; Hansen, K. S.; Yudt, L. M.; Stark, M.;
Robbins, C. M.; Moses, T. Y.; Hostetter, G.; Wagner, U.; Kakareka,
J.; Salem, G.; Pohida, T.; Heenan, P.; Duray, P.; Kallioniemi, O.;
Hayward, N. K.; Trent, J. M.; Meltzer, P. S. High frequency of BRAF
mutations in nevi. Nat. Genet. 2003, 33, 19–20.
(7) Davies, H.; Bignell, G. R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg,
S.; Teague, J.; Woffendin, H.; Garnett, M. J.; Bottomley, W.; Davis,
N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.;
Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.;
Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson,
B. A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.;
Maitland, N.; Chenevix-Trench, G.; Riggins, G. J.; Bigner, D. D.;
Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J. W. C.;
Leung, S. Y.; Yuen, S. T.; Weber, B. L.; Seigler, H. F.; Darrow, T. L.;
Paterson, H.; Marais, R.; Marshall, C. J.; Wooster, R.; Stratton, M. R.;
Futreal, P. A. Mutations of the BRAF gene in human cancer. Nature
2002, 417, 949–954.
(22) Brown, S. A.; Rizzo, C. J. A “one-pot” phase transfer alkylation/
hydrolysis of o-nitrotrifluoroacetanilides. A convenient route to N-alkyl
o-phenylenediamines. Synth. Commun. 1996, 26, 4065–4080.
(23) McKillop, A.; Fiaud, J. C.; Hug, R. P. Phase-transfer catalysis for
the synthesis of phenol ethers. Tetrahedron 1974, 30, 1379–1382.
(24) Hamley, P.; Tinker, A. C. 1,2-Diaminobenzimidazoles: selective
inhibitors of nitric oxide synthase derived from aminoguanidine.
Bioorg. Med. Chem. Lett. 1995, 5, 1573–1576.
(25) Krchnak, V.; Smith, J.; Vagner, J. A solid-phase traceless synthesis
of 2-arylaminobenzimidazoles. Tetrahedron Lett. 2001, 42, 1627–
1630.
(26) Synthetic methodology and characterization data for compounds
including 4, 18, 23, 27 are included in the Supporting Information.
(8) Kimura, E. T.; Nikiforova, M. N.; Zhu, Z.; Knauf, J. A.; Nikiforov,
Y. E.; Fagin, J. A. High prevalence of BRAF mutations in thyroid
cancer: genetic evidence for constitutive activation of the RET/PTC-
JM801050K