5230
O. Mazimba et al. / Bioorg. Med. Chem. 19 (2011) 5225–5230
A blank solution containing phosphate buffer without hydrogen
peroxide was prepared for background correction. The percentage
of scavenged hydrogen peroxide of sample and standard com-
pounds was calculated using the following equation:% Scavenged
[H2O2] = [(A0ÀA1)/A0] Â 100. Where A0 was the absorbance of con-
trol and A1 was the absorbance in the presence of the sample. The
DPPH, TPC and H2O2 assays data were processed using Microsoft
ExcelTM 2007 software.
tests. This project was funded by the European Union under the
Morama II project (EU FP-6 grant (FP6-2004-INCO-DEV-3-MARA-
MA II – 032059).
A. Supplementary data
Supplementary data (1H and 13C NMR spectras for compounds 1
and 2) associated with this article can be found, in the online ver-
3.8. GC–MS analysis
References and notes
3.8.1. Non-polar extract preparation
1. Keegan, A. B.; Van Staden, J. S. Afr. J. Sci. 1981, 77, 387–390.
2. Francis, C. M.; Campbell, M. C. New high quality oil seed crops for temperate and
tropical Australia, RIRDC Publication No 03/045, 2003, pp 9-11.
3. Bower, N.; Hertel, K.; Oh, J.; Storey, R. Econ. Bot. 1988, 42, 533–540.
4. Liao, K. L.; Yin, M. C. J. Agri. Food Chem. 2000, 48, 2266–2270.
5. Han, X.; Shen, T.; Lou, H. Int. J. Mol. Sci. 2007, 8, 950–988.
6. Young, I. S.; Woodside, J. V. J. Clin. Pathol. 2001, 54, 176–186.
7. Antolovich, M.; Prenzler, P. D.; Patsalides, E.; McDonald, S.; Robards, K. The
Analyst 2002, 127, 183–198.
8. Tawaha, K.; Alali, F. Q.; Gharaibeh, M.; Mohammad, M.; El-Elimat, T. Food Chem.
2007, 104, 1372–1378.
9. Li, J.; Liu, J.; Lan, H.; Zheng, M.; Rong, T. Front. Agric. China 2009, 3, 40–42.
10. Hartley, L. M. PhD Thesis, Falmer, Sussex University, 1997, pp 27-31.
11. Yeaboah, S. O.; Ketshajwang, K. K.; Holmback, J. J. Am. Oil Chem. Soc. 1998, 75,
741–743.
12. Chingwaru, W.; Majinda, R. R. T.; Yeboah, S. O.; Jackson, J. C.; Kapewangolo, P.
T.; Kandawa-Schulz, M.; Cencic, A. Evid. Based Compl. Altern. Med. 2011.
13. Jackson, J. C.; Duodu, K. G.; Holse, M.; de Faria, M. D.; Jordaan, D.; Chingwaru,
W.; Hansen, A.; Cencic, A.; Kandawa-Schultz, M.; Mpotokwane, S. M.;
Chimwamurombe, P.; de Kock, H. L.; Minnaar, A. Adv. Food Nutr. Res. 2010,
61, 187–246.
14. Dwuma-Badu, D.; Watson, W. H.; Gopalakrishna, E. M.; Okarter, T. U.; Knapp, J.
E., ; Schiff, P. L., Jr.; Slatkin, D. J. J. Nat. Prod. 1976, 39, 385–390.
15. Peter, R. A Master of Science dissertation. University of Botswana, Botswana,
2004, pp 49-50.
16. Jian-Hong, Y.; Kondratyuk, T. P.; Marler, L. E.; Qiu, X.; Choi, Y.; Cao, H.; Yu, R.;
Sturdy, M.; Pegan, S.; Liu, Y.; Wang, L. Q.; Mesecar, A. D.; Van Breemen, R. B.;
Pezzuto, J. M.; Fong, H. H. S.; Chen, Y. C.; Zhang, H. J. Phytochemistry 2010, 71,
641–647.
The chloroform cotyledons extract (4.6 g) and tuber EtOAc ex-
tract (Fraction T1, 1.9 g) provided the non-polar extracts after being
further extracted in a Soxhlet apparatus with n-hexane (2 h). The
solvent was allowed to evaporate at room temperature. The coty-
ledons and tuber yielded 1.6 g (35%) and 0.25 g (13%) viscous
non polar extracts respectively. The yield was expressed as weight
per weight (w/w) based on the dry weight of extract. The non-polar
extracts were dried over Na2SO4 and stored at 4 °C prior to qualita-
tive analysis by GC–MS in the conditions described.
3.8.2. FT-IR of non polar extracts
The viscous non-polar extracts were subjected to FT-IR (Shima-
dzu Hyper FT-IR 8700 spectrometer, KBr disc, 0.6 mg) analysis for
determination of their fatty acid nature.
3.8.3. GC–MS analysis
GC–MS analysis were performed using an HP-5 MS capillary
column (25 m  250
lm i.d., 0.25 lm film thickness, Agilent) in
an Agilent 6890 gas chromatograph coupled to a Waters GCT Pre-
mier mass spectrometer. The carrier gas was helium with a con-
stant flow rate of 1 mL/min. The oven temperature was initially
kept at 50 °C for 6 min then ramped at 4 °C/min to 230 °C then
gradually increased to 300 °C and held isothermally for 30 min.
Solutions of the samples (100 ppm in chloroform) were injected
17. Rowshanul Habib, M.; Nikkon, F.; Rahman, M.; Ekramul Haque, M.; Rezaul
Karim, M. Pakistan J. Biol. Sci. 2007, 10, 4174–4176.
18. Farooqi, J. A.; Ahmed, I.; Ahmed, M. Studies J. Oil Technol. Assoc. India 1983, 15,
25–26.
manually at 250 °C. Injection volume was 1.0 lL in the split-less
mode. Mass spectra were obtained by EI at electron energy of
70 eV.
19. Mazimba, O.
A Bachelor of Education Science Degree report; University of
Botswana: Botswana, 2001. pp 28–29.
20. Kapustina, I. I.; Makaréva, T. N.; Kalinovskii, A. I.; Stonik, V. A. Chem. Nat. Prod.
2005, 41, 109–110.
21. Hilditch, T. P.; Meara, M. L.; Patel, C. B. J. Sci. Food Agric. 2006, 2, 142–148.
22. Chao, C. H.; Hsieh, C. H.; Chen, S. P.; Lu, C. K.; Daid, C. F.; Sheu, J. H. Tetrahedron
Lett. 2006, 47, 5889–5891.
23. Fouraste, I.; Moulis, C. J. Nat. Prod. 2002, 65, 1180–1182.
24. Hodzic, Z.; Pasalic, H.; Memisevic, A.; Srabovic, M.; Saletovic, M.; Poljakovic, M.
Eur. J. Sci. Res. 2009, 28, 471–477.
25. De Oliveira, A. C.; Valentim, I. B.; Silva, C. A.; Bechara, E. J. H.; Paes de Barros,
M.; Mano, C. M.; Goulart, M. O. F. Food Chem. 2009, 115, 469–475.
26. Hemaisvarya, S.; Doble, M. Phytother. Res. 2006, 20, 239–249.
27. Badoni, R.; Semwal, D. K.; Rawat, U. J. Sci. Res. 2010, 2, 397–402.
28. Agelis, G.; Tzioumaki, N.; Botic, T.; Cencic, A.; Komiotis, D. Bioorg. Med. Chem.
2007, 15, 5448–5456.
3.8.4. Identification and quantification of constituents
The relative percent composition of the non-polar extract con-
stituents was determined by computerized peak area measure-
ments using internal normalization method. Identification of
components was based on GC retention time on the HP-5MS cap-
illary column, retention indices and by computer matching of the
acquired mass spectra with those stored in the spectrometer data
base using the NIST 05L Mass Spectral Library.9,32 The identity of
the spectra above 95% was considered for identification of
constituents.
29. Yeboah, E. M. O.; Majinda, R. R. T. Nat. Prod. Commun. 2009, 4, 89–94.
30. Gülçin, I.; Küfrevioglu, O. I.; Oktay, M.; Büyükokuroglu, M. E. J. Ethnopharmacol.
2004, 90, 205–215.
Acknowledgments
31. Ogunlana, O. E.; Ogunlana, O. O. Res. J. Agric. Biol. Sci. 2008, 4, 666–671.
32. Guido, F.; Pier, L. C.; Ivano, M.; Ammar, B. Food Chem. 2007, 100, 732–735.
Mr. I. Morobe of Department of Biological Sciences, University
of Botswana is thanked for his assistance during antimicrobial