(6b) h. The solution was then evaporated to dryness and the resulting solid
residue washed with diethyl ether (3 3 10 cm3) and vacuum-dried. Selected
spectroscopic data (numbering for protons and carbons follows the
crystallographic scheme shown in Fig. 1): 6a: dP (CD2Cl2) 28.66 and 34.40
(d, 2J(PP) = 54.0); dH (CD2Cl2) 1.09 (d, 3 H, J(HH) = 6.3, H-12), 1.72 (m,
1 H, H-13), 2.03 (dd, 1 H, J(HH) = 12.5 and 12.5, H-13), 3.20 (m, 1 H, H-
11), 3.93 (m, 1 H, H-10), 4.01 (m, 1 H, H-1), 4.57 (br, 1 H, H-15), 5.10 (br,
1 H, H-3), 5.57, 5.93, 6.01 and 6.20 (br, 1 H each, H-5, H-6, H-7 and H-8),
6.60 (br, 1H, H-2), 6.71–7.41 (m, 40 H, Ph); dC (CD2Cl2) 22.60 (s, C-12),
35.78 (s, C-11), 43.51 (s, C-13), 51.13 (s, C-1), 52.80 (s, C-14), 80.78 (s, C-
10), 86.90, 93.50, 95.57 and 98.32 (s, C-5, C-6, C-7 and C-8), 101.26 (s, C-4
or C-9), 111.63 (d, 2J(CP) = 7.7, C-4 or C-9), 125.95–150.31 (m, Ph),
129.99 and 144.66 (s, C-2 and C-3), 137.91 (s, C-15), 153.95 (dd, 2J(CP) =
16.9 and 11.7, C-16). 6b: dP (CD2Cl2) 27.75 and 29.48 (d, 2J(PP) = 60.2);
dH (CD2Cl2) 1.31 (d, 3 H, J(HH) = 6.2, H-12), 1.72 (m, 1 H, H-13), 1.99
(dd, 1 H, J(HH) = 13.3 and 13.3, H-13), 2.73 (m, 1 H, H-11), 3.90 (m, 1 H,
H-10), 4.04 (m, 1 H, H-1), 4.89 (br, 1 H, H-15), 5.00 (br, 1 H, H-3), 5.44,
5.52, 5.73 and 5.80 (br, 1 H each, H-5, H-6, H-7 and H-8), 6.41–7.97 (m, 38
H, Ph and C12H8), 6.90 (br, 1H, H-2); dC (CD2Cl2) 22.90 (s, C-12), 38.17
(s, C-11), 42.67 (s, C-13), 53.61 (s, C-1), 55.21 (s, C-14), 77.59 (s, C-10),
82.90, 94.94, 96.03 and 99.21 (s, C-5, C-6, C-7 and C-8), 103.66 (s, C-4 or
C-9), 107.27 (d, 2J(CP) = 9.4, C-4 or C-9), 120.36–152.86 (m, Ph and
C12H8), 131.00 and 142.73 (s, C-2 and C-3), 138.10 (s, C-15), 148.23 (dd,
2J(CP) = 15.7 and 9.4, C-16).
¶ Crystal data for 6b: C64H53BF4P2Ru·3/2THF, M = 1180.04, orange prism
¯
(0.175 3 0.15 3 0.075 mm), triclinic, P1, a = 14.7232(5), b = 18.8325(7),
c = 21.3164(9) Å, a = 70.118(2), b = 80.999(2), g = 83.676(2)°, V =
5479.4(4) Å3, Z = 4, Dcalc = 1.430 g cm23, m(Cu-Ka) = 3.364 mm21
,
Fig. 1 Molecular structure and numbering scheme of 6b (only one of the
independent molecules is shown; bond lengths and angles are only for this
molecule). Tetrafluoroborate anion, THF molecules and phenyl groups of
the PPh3 ligands have been omitted for clarity. Selected bond distances (Å)
and angles (°): Ru–C* 1.814(16); Ru–P(1) 2.3755(13); Ru–P(2)
2.3736(13); Ru–C(16) 2.138(5); C(1)–C(2) 1.516(7); C(2)–C(3) 1.327(7);
C(1)–C(10) 1.559(16); C(10)–C(11) 1.530(7); C(10)–C(16) 1.547(7);
C(11)–C(13) 1.530(7); C(13)–C(14) 1.531(7); C(14)–C(15) 1.528(7);
C(15)–C(16) 1.349(6); C*–Ru–P(1) 123.84(16); C*–Ru–P(2) 125.81(17);
C*–Ru–C(16) 116.07(21); P(1)–Ru–P(2) 98.48(5); P(1)–Ru–C(16)
92.02(13); P(2)–Ru–C(16) 91.81(13). C* = centroid of C(4), C(5), C(6),
C(7), C(8) and C(9).
Nonius Kappa CCD diffractometer, Cu-Ka radiation (l = 1.54184 Å).
158352 reflections collected, 20043 unique (12474 with I > 2s(I)). R1
=
0.0564; wR2 = 0.1298 both for I > 2s(I). CCDC 199722. See http://
other electronic format.
1 M. I. Bruce, Chem. Rev., 1998, 98, 2797; V. Cadierno, M. P. Gamasa and
J. Gimeno, Eur. J. Inorg. Chem., 2001, 571.
2 Ruthenium(II) allenylidene complexes have shown to be active catalysts
in: (a) ROMP: I. A. Abdallaoui, D. Sémeril and P. H. Dixneuf, J. Mol.
Catal. A, 2002, 182–183, 577; (b) RCM: R. Akiyama and S. Kobayashi,
Angew. Chem., Int. Ed., 2002, 41, 2602; (c) dimerization of tin hydrides:
S. M. Maddock and M. G. Finn, Angew. Chem., Int. Ed., 2001, 40, 2138;
(d) propargylic substitutions: Y. Nishibayashi, M. Yoshikawa, Y. Inada,
M. Hidai and S. Uemura, J. Am. Chem. Soc., 2002, 124, 11846; (e)
cycloaddition reactions: Y. Nishibayashi, Y. Inada, M. Hidai and S.
Uemura, J. Am. Chem. Soc., 2002, 124, 7900.
single bond). The C(2)–C(3) and C(15)–C(16) distances
(1.327(7) and 1.349(6) Å, respectively) show the expected
values for a double carbon–carbon bond.
The most remarkable feature of this coupling is the
3 V. Cadierno, S. Conejero, M. P. Gamasa and J. Gimeno, Organome-
tallics, 2002, 21, 3837.
6
generation of a functionalised h -coordinated indene derivative
5
5
6
from a h -indenyl complex. Although h ? h haptotropic
4 (a) V. Cadierno, M. P. Gamasa, J. Gimeno, M. González-Cueva, E.
Lastra, J. Borge, S. García-Granda and E. Pérez-Carreño, Organome-
tallics, 1996, 15, 2137; (b) S. Conejero, J. Díez, M. P. Gamasa, J. Gimeno
and S. García-Granda, Angew. Chem., Int. Ed., 2002, 41, 3439.
5 These chemical shifts are typical of alkenyl-ruthenium(II) derivatives.
See for example: K. Bieger, J. Díez, M. P. Gamasa, J. Gimeno, M.
Pavlisˆta, Y. Rodríguez-Álvarez, S. García-Granda and R. Santiago-
García, Eur. J. Inorg. Chem., 2002, 1647.
6 M. Y. Hung, S. M. Ng, Z. Zhou, C. P. Lau and G. Jia, Organometallics,
2000, 19, 3692 and references therein.
7 (a) No intermediates could be detected by 31P-{1H} NMR spectroscopy
(b) transformation of 3a,b into 6a,b proceeds in the presence of the
radical-scavenger 2,6-di-tert-butyl-4-methylphenol, discarding the in-
volvement of free radicals in this coupling process.
rearrangements have been reported as the result of protonation
of h -indenyl complexes,6 as far as we know these are the first
5
rearrangements mediated by a C–C coupling. We note that the
related
alkenyl-vinylidene
derivative
5
[Ru{NCNC(H)CPh2CH2CHNCH2}(h -C9H7)(PPh3)2][BF4]3
6
does not rearrange in solution, to afford the corresponding (h -
indene)ruthenium(II) metallacycle, even in refluxing dichloro-
methane. This fact seems to indicate that electron-rich alkenyl
units, i.e. C(CH3)NCH2, are required in this coupling process.
Further studies concerning the scope and mechanism7,8 of
this unusual carbocyclization, as well as reactivity studies on the
resulting metallacycles, are now under active investigation.
We thank the Ministerio de Ciencia y Tecnología of Spain
(Project BQU2000-0227) and the Gobierno del Principado de
Asturias (Project PR-01-GE-6) for financial support, and for a
Ph.D. fellowship (to S. C.).
8 Although the exact mechanism of this reaction is still unknown, the
following processes could be involved: (a) intramolecular [2 + 2]
cycloaddition between the two CNC double bonds of the alkenyl-
vinylidene group. A process of this type has been recently reported: P.
Álvarez, E. Lastra, J. Gimeno, M. Bassetti and L. R. Falvello, J. Am.
Chem. Soc., 2003, 125, 2386; (b) direct carbocyclization of the electron-
rich double bond at the Ca of the vinylidene unit. A process of this type
has been proposed in the catalytic cyclization of dienyl alkynes: C. A.
Notes and references
‡ Compounds 2–4a–d have been characterized by NMR spectroscopy and
elemental analyses or HRMS. See ESI.
5
Merlic and M. E. Pauly, J. Am. Chem. Soc., 1996, 118, 11319; (c) h to
3
h slippage of the indenyl ligand: M. J. Calhorda and L. F. Veiros, Coord.
§ A solution of the corresponding vinylidene complex [Ru{N
Chem. Rev., 1999, 185–186, 37; V. Cadierno, J. Díez, M. P. Gamasa, J.
Gimeno and E. Lastra, Coord. Chem. Rev., 1999, 193–195, 147; M. J.
Calhorda, C. C. Romao and L. F. Veiros, Chem. Eur. J., 2002, 8, 868.
5
CNC(H)CR1R2CH2C(Me)NCH2}(h -C9H7)(PPh3)2][BF4] (3a,b; 1 mmol) in
dichloromethane (30 cm3) was stirred at room temperature for 3 (6a) or 72
CHEM. COMMUN., 2003, 840–841
841