Cyclic Alkenenitriles
second Grignard reagent generates the alkylmagnesium
alkoxide 2 that triggers a stereoselective conjugate ad-
dition. Alkylating the resulting magnesiated nitrile 3
with electrophiles installs two new stereocenters in one
synthetic operation.12
insight into the stereoelectronically controlled conju-
gate addition and cyclization reactions.
Resu lts a n d Discu ssion
A key lead for O-alkylating the trimethylsiloxyl group
of enone-derived17 cyanohydrins stems from two O-
alkylations of trimethylsilyl cyanohydrins with ClCH2-
OCH3.18 Presuming the alkylation to require a particu-
larly reactive electrophile, the cyanohydrin 5a 17a,b was
treated with the sulfonium ylide 9a 19 to directly generate
the methylthiomethyl cyanohydrin 6a (Scheme 3). The
trimethylsilyl-methylthiomethyl interchange proceeds
by an O-alkylation of 5a with ylide 9a ,20 formed in situ
from DMSO and acetic anhydride,19 followed by desilyl-
ation to generate 6a . Unfortunately, chlorination of 6a
with SO2Cl221 followed by numerous metalation strategies
failed to promote the desired Wittig rearrangement22 of
11a but rather caused significant degradation and for-
mation of ketone-containing ethers arising from attack
on the nitrile group.23 Attempts to deprotonate and
rearrange the corresponding nitrile (11a , CNdCl),24 were
similarly fruitless despite close precedent in the rear-
rangement of cyanomethyl enamines.25
Conceptually, the sequential conjugate addition-alkyl-
ation of ω-chloroalkyl Grignard reagents5,13 to cyclic
hydroxyalkenenitriles provides an annulation route to
bicyclic nitriles. Developing this annulation strategy
requires an expedient synthesis of cyclic hydroxyal-
kenenitriles for which few syntheses currently exist.14
Addressing this deficiency suggested accessing the req-
uisite cyclic hydroxyalkenenitriles from an unsaturated
silyl cyanohydrin since chiral silyl cyanohydrins are
readily available in high enantiomeric ratios.15 The stra-
tegy envisages conversion of an unsaturated trimethyl-
silyl cyanohydrin to the corresponding methylthiometh-
yl ether followed by halogen-SMe exchange and [2,3]
Wittig rearrangement (Scheme 2). The 2-fold appeal of
this sequence lies in transposing the cyanohydrin chiral-
ity into the hydroxyalkenenitrile16 for stereoselective
chelation-controlled conjugate additions and in concur-
rently expanding the versatility of silyl cyanohydrins
through an oxygen functional group interchange rather
than the more typical addition to, or hydrolysis of, the
nitrile group.15
SCHEME 3. O-Alk yla tion of Silylcya n oh yd r in 5a
SCHEME 2. Cya n oh yd r in -Alk en en itr ile
Rea r r a n gem en t Str a tegy
Although the [2,3] Wittig strategy proved unmanage-
able, concurrent alkylations of the methyl-substituted
Pursuing this strategy identified an unusual silyl cy-
anohydrin rearrangement for synthesizing several cyclic
alkenenitriles. Chelation-controlled conjugate addition of
ω-chloroalkyl Grignard reagents to the resulting cyclic
hydroxyalkenenitriles generates intermediate magnesi-
ated nitriles that cyclize to cis-octalins, hydrindanes, and
decalins in the first general annulation of alkenenitriles.
Collectively, the rearrangement-annulation reactions
generate a diverse array of bicyclic nitriles providing
(17) (a) Higuchi, K.; Onaka, M.; Izumi, Y. Bull. Chem. Soc. J . 1993,
66, 2016. (b) Wada, M.; Takahashi, T.; Domae, T.; Fukuma, T.; Miyoshi,
N.; Smith, K. Tetrahedron: Asymmetry 1997, 8, 3939. (c) Agami, C.;
Fadlallah, M. Tetrahedron 1983, 39, 777.
(18) Kabalka, G. W.; Mathur, S. B.; Gai, Y. Z. Org. Prep. Proc. Intl.
1990, 22, 87.
(19) (a) Lee, T. V. In Comprehensive Organic Synthesis; Fleming,
I., Trost, B. M., Eds.; Pergamon: Oxford, 1991; Vol. 7, pp 291-303.
(b) Yamada, K.; Kato, K.; Nagase, H.; Hirata, Y. Tetrahedron Lett.
1976, 17, 65.
(20) O-Alkylation of the TMS cyanohydrin by the sulfonium ylide,
rather than Ac2O, is required by the recovery of unreacted 5c from
refluxing Ac2O.
(21) Okada, Y.; Wang, J .; Yamamoto, T.; Mu, Y.; Yokoi, T. J . Chem.
Soc., Perkin Trans. 1 1996, 2139.
(22) Davidsen, S. K. In Encyclopedia of Reagents for Organic
Synthesis; Paquette, L. A., Ed.; Wiley: Chichester, U.K., 1995; pp
5005-5006.
(12) Fleming, F. F.; Wang, Q.; Steward, O. W. J . Org. Chem. 2003,
68, 4235.
(13) (a) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew.
Chem., Int. Ed. 2000, 39, 4415. (b) Bernady, K. F.; Poletto, J . F.;
Nocera, J .; Mirando, P.; Schaub, R. E.; Weiss, M. J . J . Org. Chem. 1980,
45, 4702.
(14) (a) Fleming, F. F.; Wang, Q.; Steward, O. W. J . Org. Chem.
2001, 66, 2171. (b) Kurihara, T.; Miki, M.; Yoneda, R.; Harusawa, S.
Chem. Pharm. Bull. 1986, 34, 2747. (c) Nokami, J .; Mandai, T.
Nishimura, A.; Takeda, T.; Wakabayashi, S.; Kunieda, N. Tetrahedron
Lett. 1986, 27, 5109. (d) Nokami, J .; Mandai, T.; Imakura, Y.;
Nishiuchi, K.; Kawada, M.; Wakabayashi, S. Tetrahedron Lett. 1981,
22, 4489.
(15) (a) Gregory, R. J . H. Chem. Rev. 1999, 99, 3649. (b) Effenberger,
F. Enantiomer 1996, 1, 359. (c) North, M. Synlett 1993, 807.
(16) Schrader, T.; Kirsten, C.; Herm, M. Phosp. Sulf. Silicon 1999,
144-146, 161.
(23) The poor electrophilicity of the nitrile functionality and the
viability of several nitrile-containing alkyllithiuma,b and Grignardc-h
reagents implied the viability of forming and rearranging the metalated
cyanohydrin 7a . (a) Tucker, C. E.; Majid, T. N.; Knochel, P. J . Am.
Chem. Soc. 1992, 114, 3983. (b) Parham, W. E.; J ones, L. D. J . Org.
Chem. 1976, 41, 1187. (c) Inoue, A.; Kitagawa, K.; Shinokubo, H.;
Oshima, K. J . Org. Chem. 2001, 66, 4333. (d) Lee, J .-s.; Velarde-Ortiz,
R.; Guijarro, A.; Wurst, J . R.; Rieke, R. D. J . Org. Chem. 2000, 65,
5428. (e) Abarbri, M.; Thibonnet, J .; Be´rillon, L.; Dehmel, F.; Rot-
tla¨nder, M.; Knochel, P. J . Org. Chem. 2000, 65, 4618. (f) Thibonnet,
J .; Knochel, P. Tetrahedron Lett. 2000, 41, 3319. (g) Kitagawa, K.;
Inoue, A.; Shinokubo, H.; Oshima, K. Angew. Chem., Int. Ed. 2000,
39, 2481. (h) Burns, T. P.; Rieke, R. D. J . Org. Chem. 1987, 52, 3674.
J . Org. Chem, Vol. 68, No. 20, 2003 7647