isomer (confirmed from 1H NMR and LC-MS analysis).16,17
Replacement of the reaction solvent to xylenes allowed the
reaction time to be shortened to 9 h without affecting the
above ratio of products. Difficulty in separation of isomers
forced conversion of 11 into seco-C/D ring lysergol 12 and
its N-Boc derivative 13. Accordingly, treatment of the crude
Heck reaction mixture with HCl or TBAF afforded pure 12
and 13 in 32 and 41% yields from 10, respectively.
To test the RCM protocol2 for the construction of the seco-
C/D ring framework 16, the common starting 4-bromoindole
5 was subjected to sequential Stille coupling with allyltribu-
tyltin,18 LAH reduction, and acylation to furnish the 4-al-
lyltryptamine 14 in 42% overall yield (Scheme 3). Treatment
RudCHPh]2 in refluxing CH2Cl2 under syringe pump
addition of substrate and two loadings of catalyst19 afforded
smooth reaction to give 16 as a single (Z)-isomer (3J ) 10.4
Hz) in 69% yield.
In summary, the intramolecular Heck reaction has been
probed in context of 8- (4, 8) Vs 9-membered (3) ring
formation and applied to the construction of the macrocyclic
analogue 12 of lysergol. In addition, and more efficiently,
macrocycle 16, representing the first seco-C/D ring ergot
alkaloid core, has been prepared by RCM.20 Extension of
this rational methodology for the synthesis of other seco-
ergolines and related systems for bioactivity studies and the
transformation of prototypes 10 and 15 into the ergot
alkaloids may be anticipated.
Acknowledgment. We thank Dr. Malik Slassi for en-
thusiastic encouragement and bioscreening. We are grateful
to NSERC Canada and NPS Allelix for support under the
CRD program. B.A.C. is a recipient of a Queen’s Graduate
Fellowship (QGF), 1999-2000.
Scheme 3a
Supporting Information Available: Experimental details
and data of intermediate and final compounds. This material
a Reaction conditions: (a) AllylSnBu3, 5 mol % Pd(PPh3)4, Tol,
110 °C, 14 h (69%). (b) LiAlH4, E2O-THF, rt, 12 h (61%). (c)
Ac2O, Py, rt, 20 h (97%). (d) Boc2O, NEt3, cat. DMAP, DCM, rt,
2 h (73%). (e) n-BuLi, AllylBr, THF, -78 °C (5 min) to rt (20 h)
(65%). (f) 30 mol % (PCy3)2(Cl)2RudCHPh, DCM (c 0.0021 M),
40 °C, 20 h (69%).
OL035398T
(10) Batcho, A. D.; Leimgruber, W. Organic Syntheses; Wiley: New
York, 1990; Collect. Vol. VII, pp 34-41. Batcho, A. D.; Leimgruber, W.
Org. Synth. 1985, 63, 214-225.
(11) Bhattacharya, A.; Purohit, V. C.; Rinaldi, F. Org. Proc. Res. DeV.
2003, 7, 254-258. James, P. N.; Snyder, H. R. Organic Syntheses; Wiley:
New York, 1963; Collect. Vol. IV, pp 539-542.
(12) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C.
A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849-3862.
with Boc2O followed by N-allylation afforded the RCM
precursor 15. Using the first-generation catalyst [(PCy3)2(Cl)2-
(13) Liras, S.; Lynch, C. L.; Fryer, A. M.; Vu, B. T.; Martin, S. F. J.
Am. Chem. Soc. 2001, 123, 5918-5924.
(14) Hopmann, C.; Steglich, W. Liebigs Ann. 1996, 7, 1117-1120.
(15) For the synthesis of a constrained tryptophan derivative in which a
2:1 mixture of 7-exo and 8-endo cyclization modes was observed, see:
Horwell, D. C.; Nichols, P. D.; Ratcliffe, G. S.; Roberts, E. J. Org. Chem.
1994, 59, 4418-4423.
(8) Nichols, D. E.; Frescas, S.; Marona-Lewicka, D.; Kurrasch-Orbaugh,
D. M. J. Med. Chem. 2002, 45, 4344-4349 and references therein. Doll,
M. K.-H. J. Org. Chem. 1999, 64, 1372-1374. Slassi, A.; Meng, C. Q.;
Dyne, K.; Wang, X.; Lee, D. K. H.; Kamboj, R.; McCallum, K. L.;
Mazzocco, L.; Rakhit, S. Med. Chem. Res. 1999, 9, 668-674. Mantegani,
S.; Baumer, L.; Brambilla, E.; Caccia, C.; Fornaretto, M. G.; McArthur, R.
A.; Varasi, M. Eur. J. Med. Chem. 1998, 33, 279-292. Carr, M. A.;
Creviston, P. E.; Hutchison, D. R.; Kennedy, J. H.; Khau, V. V.; Kress, T.
J.; Leanna, M. R.; Marshall, J. D.; Martinelli, M. J.; Peterson, B. C.; Varie,
D. L.; Wepsiec, J. P. J. Org. Chem. 1997, 62, 8640-8653; Stamos, I. K.;
Kelly, E. A.; Floss, H. G.; Cassady, J. M. J. Heterocycl. Chem. 1995, 32,
1303-1308.
(16) For full experimental details, see Supporting Information.
(17) Trans and cis geometries of the double bond in 11 was assigned
from the characteristic signals 3J ) 16.3 and 12.2 Hz, respectively. For 12
3
and 13, J ) 16.3 and 16.2 Hz, respectively.
(18) Brown, M. A.; Kerr, M. A. Tetrahedron Lett. 2001, 42, 983-985.
Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1-652.
(19) For an account concerning the longevity of the Grubbs catalyst,
see: Ulman, M.; Grubbs, R. H. J. Org. Chem. 1999, 64, 7202-7207.
(20) For significant applications of RCM in the synthesis of alkaloids,
see: Deiters, A.; Martin, S. F. Org. Lett. 2002, 4, 3243-3245 and references
therein. Lee, K. L.; Goh, J. B.; Martin, S. F. Tetrahedron Lett. 2001, 42,
1635-1638. For a photochemical approach, see: Anderson, N. G.; Lawton,
R. G. Tetrahedron Lett. 1977, 22, 1843-1846.
(9) Cross-screening of compound 12 against a panel of serotonergic,
dopaminergic, and R-adrenergic receptors showed good potency (Ki ) 170
( 78) and moderate selectivity for the 5-HT7 receptor. Slassi, M.; Rakhit,
S.; Kalinin, A. V.; Chauder, B. A.; Snieckus, V. Unpublished results.
Org. Lett., Vol. 5, No. 19, 2003
3521