our knowledge, the synthesis of secondary sugar sulfonic
acids has not yet been disclosed, although such derivatives
might successfully mimic the building blocks of sulfated
polysaccharides which have very important biological prop-
erties.
Scheme 2. Preparation of Protected 2′-Methylnaphthyl
â-D-Thioglucopyranosides: Transformation of Compound 8 into
Protected Methyl 2-Thio(2′-methylnaphthyl)-
R-D-mannopyranosidea
Our approach to 2-sulfonic acid sugars is based upon
stereospecific 1,2-alkyl/arylthio group migration7-10 and the
use of an easily removable arylthio group to regenerate the
2-SH, followed by oxidation. Trityl, p-methoxybenzyl, and
2′-methylnaphthyl â-D-thioglycosides were prepared from
appropriate isothiouronium salts (111 and 1012) using trityl
chloride, p-methoxybenzyl bromide, and 2′-methylnaphthyl
bromide as arylation agents (Schemes 1-3).
a Key: (a) 3.5 equiv of Na2CO3, 1.8 equiv of Na2SO3, CH2Cl2,
H2O, rt, 1.5 h, 1.3 equiv of NAPBr, Hunig’s base, CH2Cl2, rt, 24
h; (b) NaOMe/MeOH, rt, overnight; (c) 1.3 equiv of MsCl, 0.15
equiv of DMAP, dry pyridine, rt, overnight; (d) 5 equiv of NaOMe,
MeOH, reflux, 4 h.
Scheme 1. Preparation of Protected p-methoxybenzyl
â-D-thioglucosides: Transformation of Compound 4 into
Protected Methyl 2-Thio(p-methoxybenzyl)-
R-D-mannopyranosidea
Scheme 3. Preparation of Protected Trityl
â-D-Thioglucopyranosides: Transformation of Compound 14
into Protected Methyl 2-Thiotrityl-R-D-mannopyranosidea
a Key: (a) 3.5 equiv of Na2CO3, 1.8 equiv of Na2SO3, CH2Cl2,
H2O, rt, 1.5 h, 1.3 equiv of PMBnBr, Hunig’s base, CH2Cl2, rt, 24
h; (b) NaOMe/MeOH, rt, overnight; (c) 1.3 equiv of MsCl, 0.15
equiv of DMAP, dry pyridine, rt, overnight; (d) 5 equiv of NaOMe,
MeOH, reflux, 4 h.
The partially acetylated thioglycosides 2, 6, and 11 were
deacetylated to furnish OH-2 compounds (3 and 7); 12 was
aKey: (a) 3.5 equiv of Na2CO3, 1.8 equiv of Na2SO3, CH2Cl2,
H2O, rt, 1.5 h, 1.3 equiv of TrCl, Hunig’s base, CH2Cl2, rt, 24 h;
(b) NaOMe/MeOH, rt, overnight; (c) 1.3 equiv of MsCl, 0.15 equiv
of DMAP, dry pyridine, rt, overnight; (d) 5 equiv of NaOMe,
MeOH, reflux, 4 h; (e) 1.5 equiv of R,R-dimethoxytoluene, 0.2
equiv of pTSA‚H2O, dry DMF 50 °C, vacuum 2 h.
(3) Lehmann, J. In Kohlenhydrate; Georg Thieme Verlag: Stuttgart,
1996; p 296.
(4) (a) Miyano, M.; Benson, A. A. J. Am. Chem. Soc. 1962, 84, 59-62.
(b) Johns, S. R.; Leslie, D. R.; Willing, R. I.; Bishop, D. G. Austral. J.
Chem. 1978, 31, 65-72. (c) Gigg, R.; Penglis, A. A.; Conant, R. J. Chem.
Soc., Perkin Trans. 1 1980, 2490-2493. (d) Fernandez-Bolanos, J.; Maya
Castilla, I.; Fernandez-Bolanos Guzman, J. Carbohydr. Res. 1986, 147,
325-329. (e) Ulgar, V.; Maya, I.; Fuentes, J.; Fernandez-Bolanos, J. G.
Tetrahedron 2002, 58, 7967-7973. (f) Hanashima, S.; Mizushina, Y.;
Yamazaki, T.; Ohta, K.; Takahashi, S.; Sahara, H.; Sakaguchi, K.; Sugawara,
F. Bioorg. Med. Chem. 2001, 9, 367-376.
(5) Borba´s, A.; Szabovik, G.; Antal, Z.; Fehe´r, K.; Csa´va´s, M.; Szila´gyi,
L.; Herczegh, P.; Lipta´k, A. Tetrahedron: Asymmetry 2000, 11, 549-566.
(6) Knapp, S.; Darout, E. Tetrahedron Lett. 2002, 43, 6075-6078.
(7) Ryan, K. J.; Acton, E. M.; Goodman, L. J. Org. Chem. 1971, 36,
2646-2657.
(8) (a) Nicolaou, K. C.; Ladduwahetty, T.; Randall, J. L.; Chucholowski,
A. J. Am. Chem. Soc. 1986, 108, 2466-2467. (b) Nicolaou, K. C.; Mitchell,
H. J.; Fylaktakidou, K. C.; Rodriguez, R. M.; Suzuki, H. Chem. Eur. J.
2000, 6, 3116-3148. (c) Nicolaou, K. C.; Mitchell, H. J.; Rodriguez, R.
M.; Fylaktakidou, K. C.; Suzuki, H.; Conley, S. R. Chem. Eur. J. 2000, 6,
3149-3165. (d) Nicolaou, K. C.; Fylaktakidou, K. C.; Mitchell, H. J.; van
Delft, F. L.; Rodriguez, R. M.; Conley, S. R.; Jin, Z. Chem. Eur. J. 2000,
6, 3166-3185.
transformed into a 4,6-O-benzylidene derivative (13). The
OH-2 compounds (3, 7, and 13) were mesylated to give
mesyl compounds (4, 8, and 14) ready for transformation
via 1 f 2 thio migration (Schemes 1-3). These reactions
were performed in methanol in the presence of 5 equiv of
NaOCH3 at reflux temperature for 4 h. The products were
obtained in high yields and with complete stereoselectivity;
starting from thio â-D-glucopyranosides, methyl 2-thio-R-
D-mannopyranosides (5, 9, and 15) were formed.
The p-methoxybenzyl group is commonly used for the
protection of SH groups in peptide13 and in nucleoside
chemistry.7,14 It can be removed under mild acidic (TFA, in
(9) (a) Auzanneau, F.-I.; Bundle, D. R. Carbohydr. Res. 1991, 212, 13-
24. (b) Pozsgay, V. Carbohydr. Res. 1992, 235, 295-302.
(10) (a) Zuurmond, H. M.; van der Klein, P. A. M.; van der Marel, G.
A.; van Boom, J. H. Tetrahedron Lett. 1998, 33, 2063-2066. (b) Johnston,
B. D.; Pinto, B. M. J. Org. Chem. 2000, 65, 4607-4617. (c) Yu, B.; Yang,
Z. Tetrahedron Lett. 2000, 41, 2961-2964.
(11) Compound 1 was prepared from 2-O-acetyl-3,4,6-tri-O-benzyl-R-
glucopyranosyl bromide (Kochetkov, N. K.; Dmitriev, B. A.; Chizhov, O.
S.; Klimov, E. M.; Malysheva, N. K.; Chernyak, A. Ya.; Bayramova, N.
E.; Torgov, V. I. Carbohydr. Res. 1974, 33, C5-C7) by treating with
thiourea (4.7 equiv) in dry boiling acetone for 15 min.
3672
Org. Lett., Vol. 5, No. 20, 2003