LETTER
A New Convergent Approach to Biphenomycin Antibiotics
525
(10) The enantiomeric purity of 11 was determined via its Fmoc
derivative by HPLC (ChiraDex®Gamma (5-µm)
LiChroCART® 250 × 4 mm (Merck) MeCN–triethylamine–
AcOH, 1000:7:0.5, 1 mL/min) according to Armstrong et al.
to be > 98% ee. See: Tang, Y.; Zukowski, J.; Armstrong, D.
W. J. Chromatogr. A 1996, 743, 261.
(11) The absolute configuration of 11 was determined to be S by
conversion into (S)-o-tyrosine, whose absolute configuration
has been unambiguously established. Lit.: Dugave, C. J.
Org. Chem. 1995, 60, 601.
Acknowledgement
We are greatly indebted to Prof. Dr. Klaus Th. Wanner for his
generous support. Financial support of this work by Deutsche
Forschungsgemeinschaft is gratefully acknowledged. We would
also like to thank G. Bauschke and T. Hausmann for technical as-
sistance.
References
(12) Morera, E.; Ortar, G. Synlett 1997, 1403.
(13) Murata, M.; Watanabe, S.; Masuda, Y. Synlett 2000, 1043.
(14) Davies, S. G.; Pyatt, D. J. Orgmet. Chem. 1990, 387, 381.
(15) Farina, V.; Krishnan, B.; Marshall, D. R.; Roth, G. P. J. Org.
Chem. 1993, 58, 5434.
(16) Albrecht, B. K.; Williams, R. M. Tetrahedron Lett. 2001, 42,
2755.
(17) Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React.
1997, 50, 1.
(18) In addition to 20, 21 and 22 small amounts of the respective
aryl iodide homocoupling product i (1–7%) and in case of
entries 1–4 product ii (3–6%), which arises from aryl
transfer by the arsine, were also obtained (Figure 2).
(1) (a) Martin, J. H.; Mitscher, L. A.; Shu, P.; Porter, J. N.;
Bohonos, N.; DeVoe, S. E.; Patterson, E. L. Antimicrob.
Agents Chemother.-1967 1968, 422. (b) Chang, C. C.;
Morton, G. O.; James, J. C.; Siegel, M. M.; Kuck, N. A.;
Testa, R. T.; Borders, D. B. J. Antibiotics 1991, 44, 674.
(2) (a) Ezaki, M.; Iwami, M.; Yamashita, M.; Hashimoto, S.;
Komori, T.; Umehara, K.; Mine, Y.; Kohsaka, M.; Aoki, H.;
Imanaka, H. J. Antibiotics 1985, 38, 1453. (b) Ezaki, M.;
Shigematsu, N.; Yamashita, M.; Komori, T.; Umehara, K.;
Imanaka, H. J. Antibiotics 1993, 46, 135.
(3) (a) Brown, A. G.; Crimmin, M. J.; Edwards, P. D. J. Chem.
Soc. Perkin Trans. 1 1992, 123. (b) Carlström, A.-S.; Frejd,
T. J. Chem. Soc., Chem. Commun. 1991, 1216. (c) Brown,
A. G.; Edwards, P. D. Tetrahedron Lett. 1990, 31, 6581.
(d) Schmidt, U.; Meyer, R.; Leitenberger, V.; Lieberknecht,
A. Angew. Chem., Int. Ed. Engl. 1989, 28, 929; Angew.
Chem. 1989, 101, 946.
(4) (a) Schmidt, U.; Leitenberger, V.; Griesser, H.; Schmidt, J.;
Meyer, R. Synthesis 1992, 1248. (b) Schmidt, U.;
Leitenberger, V.; Meyer, R.; Griesser, H. J. Chem. Soc.,
Chem. Commun. 1992, 951.
(5) (a) Schmidt, U.; Meyer, R.; Leitenberger, V.; Griesser, H.;
Lieberknecht, A. Synthesis 1992, 1025. (b) Schmidt, U.;
Meyer, R.; Leitenberger, V.; Lieberknecht, A.; Griesser, H.
J. Chem. Soc., Chem. Commun. 1991, 275.
(6) For a recent convergent synthetic approach to related
cyclopeptides, see: Carbonnelle, A.-C.; Zhu, J. Org. Lett.
2000, 2, 3477.
Figure 2
(19) For the preparation of 23 (Figure 3), see: Herrmann, W. A.;
Broßmer, C.; Öfele, K.; Reisinger, C.-P.; Priermeier, T.;
Beller, M.; Fischer, H. Angew. Chem., Int. Ed. Engl. 1995,
34, 1844; Angew. Chem. 1995, 107, 1989.
(7) (a) Josien, H.; Martin, A.; Chassaing, G. Tetrahedron Lett.
1991, 32, 6547. (b) Oppolzer, W.; Moretti, R.; Thomi, S.
Tetrahedron Lett. 1989, 30, 6009.
(8) Benzylbromide 8 was prepared from 5-iodo-salicylic acid in
40% overall yield as indicated in Scheme 6.
Figure 3
(20) (a) Louie, J.; Hartwig, J. F. Angew. Chem. Int. Ed. Engl.
1996, 35, 2359; Angew. Chem. 1996, 108, 2531.
Scheme 6
(b) Herrmann, W. A.; Böhm, V. P. W.; Reisinger, C.-P. J.
Orgmet. Chem. 1999, 576, 23. (c) Brody, M. S.; Finn, M. G.
Tetrahedron Lett. 1999, 40, 415.
(9) (S)-2-Amino-3-(2-benzyloxy-5-iodophenyl)propionic
acid(11): Colourless crystals, mp 228–230 °C (decomp.).
[α]D20 = –11.8 (c 0.11, MeOH); 1H NMR (500 MHz,
CD3OD): δ = 2.89 (dd, J = 9.2/14.3 Hz, 1 H, CH2CH), 3.41
(dd, J = 4.7/14.3 Hz, 1 H, CH2CH), 3.89 (dd, J = 4.7/9.2 Hz,
1 H, CH2CH), 5.18 (s, 2 H, OCH2), 6.86 (d, J = 8.6 Hz, 1 H,
(21) Stille coupling of 5b and 6: A solution of 5b (29.5 mg, 37
mol) in degassed NMP (0.14 mL) was added to a stirred
mixture of anhydrous LiCl (4.3 mg, 102 mol), 6 (20.0 mg, 34
mol) and 23 (1.6 mg, 1.7 mol) in degassed NMP (0.2 mL) at
room temperature. The reaction mixture was heated at 90 °C
for 14 h. After cooling to room temperature, the reaction
mixture was diluted with CH2Cl2 and filtered through a pad
of silica gel. The filtrate was washed with aqueous 1.3 M
phosphate buffer pH 7.0 and water, dried (MgSO4) and
concentrated under reduced pressure. The resulting residue
was purified by prep. HPLC (LiChrosorb® Si 60 5 µm, n-
H
arom), 7.28–7.49 (m, 5 H, Harom), 7.54 (dd, J = 2.2/8.6 Hz, 1
H, Harom), 7.57 (d, J = 2.2 Hz, 1 H, Harom); 13C NMR (125
MHz, CD3OD): δ = 33.5, 56.2, 71.3, 83.9, 115.9, 128.7,
128.9, 129.2, 129.8, 138.2, 138.8, 141.0, 158.3, 173.6; MS
+
(MALDI): m/z = 398 [M + 1]. HRMS (CI, CH5 ): Anal.
Calcd for C16H16NO3I (M + H+): 398.0253; Found:
398.0253.
Synlett 2003, No. 4, 522–526 ISSN 0936-5214 © Thieme Stuttgart · New York