Figure 1. Chiral dirhodium tetracarboxylates.
catalyst.6 In recent years, the ready accessibility of tert-
leucine has made the tert-butyl group a very popular unit to
incorporate into chiral catalysts, especially as the enantio-
induction is often much improved compared to catalysts
containing smaller groups.7 Hashimoto has successfully used
the tert-butyl group in the carbenoid field in the design of
his rhodium phthalimidocarboxylate catalysts, where in most
instances the tert-butyl derivative Rh2(S-PTTL)4 is far
superior to other catalysts derived from amino acids with
smaller side chains.5 The use of ligands with stereogenic
centers containing larger groups than tert-butyl, such as
adamantyl, have rarely been incorporated into chiral cata-
lysts,8 although large groups away from the stereogenic
centers have been used with good effect.9 We recognized
that our newly developed C-H activation chemistry10 would
allow us enantioselective access to adamantylglycine.11
Therefore, in evaluating the potential of using Rh2(S-PTTL)4
as a backup chiral catalyst for Rh2(S-DOSP)4, we expanded
the study to include the adamantyl catalyst Rh2(S-PTAD)4.
The key step in the synthesis of Rh2(S-PTAD)4 is an
intermolecular C-H functionalization of adamantane by
means of a metal carbenoid-induced C-H insertion. The Rh2-
(S-DOSP)4-catalyzed reactions of donor/acceptor-substituted
carbenoids are particularly effective because highly regiose-
lective and enantioselective C-H functionalization can be
achieved.12 Previous studies have demonstrated that a range
of alkanes can be functionalized,13 and in this paper, we use
this reaction in the synthesis of adamantylglycine. The results
of the Rh2(S-DOSP)4-catalyzed reaction of the vinyldi-
azoacetates 2 with adamantane (1) using hexanes as solvent
are summarized in Table 1. Selective C-H functionalization
Table 1. Optimization of Adamantane C-H Activation
(6) Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691.
(7) (a) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325. (b)
Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336. (c) Glos, M.;
Reiser, O. Org. Lett. 2000, 2, 2045. (d) Schinnerl, M.; Seitz, M.; Kaiser,
A.; Reiser, O. Org. Lett. 2001, 3, 4259. (e) Mu¨ller, P.; Bolea, C. HelV.
Chim. Acta 2002, 85, 483. (f) Lim, H.-J.; Sulikowkski, G. A. J. Org. Chem.
1995, 60, 2326. (g) Ye, T.; Garcia, F. C.; McKervey, M. A. J. Chem. Soc.,
Perkin Trans. 1 1995, 1373.
compound
R
temp, °C
yield, %
ee, %
a
b
c
c
H
OMe
Br
69
69
69
23
58
40
57
10
91
85
95
98
(8) Clariana, J.; Comelles, J.; Moreno-Manas, M.; Vallribera, A.
Tetrahedron: Asymmetry 2002, 13, 1551.
(9) (a) Ruck, R. T.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 2882.
(b) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 1999, 38, 2398. (c) Perry, M. C.; Powell, M. T.; Cui, X.; Hou, D.-R.;
Reibenspies, J. H.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 113. (d) Tsang,
W. C. P.; Jernelius, J. A.; Cortez, G. A.; Weatherhead, G. S.; Schrock, R.
R.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 2591. (e) How, D.-R.;
Burgess, K. Org. Lett. 1999, 1, 1745.
(10) (a) Davies, H. M. L.; Beckwith, E. J. Chem. ReV. 2003, 103, 2861.
(b) Davies, H. M. L.; Antoulinakis, E. G. J. Organomet. Chem. 2001, 617,
47.
(11) For previous enantioselective syntheses of adamantylglycine, see:
(a) Hasegawa, M.; Taniyama, D.; Tomioka, K. Tetrahedron 2000, 56, 10153.
(b) Clariana, J.; Garcia-Granda, S.; Gotor, V.; Gutierrez-Fernandez, A.;
Luna, A.; Moreno-Manas, M.; Vallribera, A. Tetrahedron: Asymmetry 2000,
11, 4549. (c) Galvez, N.; Moreno-Manas, M.; Vallribera, A.; Molins, E.;
Cabrero, A. Tetrahedron Lett. 1996, 37, 6197. (d) Krasutskii, P. A.;
Semenova, I. G.; Novikova, M. I.; Yurchenko, A. G.; Tikhonov, V. P.;
Belikov, V. M.; Belokon, Yu. N. Zh. Org. Khim. 1985, 21, 1458. (e) Augeri,
D. J.; Robl, J. A.; Betebenner, D. A.; Magnin, D. R.; Khanna, A.; Robertson,
J. G.; Wang, A.; Simpkins, L. M.; Taunk, P.; Huang, Q.; Han, S.-P.; Abboa-
Offei, B.; Cap, M.; Xin, L.; Tao, L.; Tozzo, E.; Welzel, G. E.; Egan, D.
M.; Marcinkeviciene, J.; Chang, S. Y.; Biller, S. A.; Kirby, M. S.; Parker,
R. A.; Hamann, L. G. J. Med. Chem. 2005, 48, 5025. (f) Chen, Y. K.;
Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 12225. For
enantioselective synthesis of adamantyl amino alcohol, see: Takacs, J. M.;
Jaber, M. R.; Vellekoop, A. S. J. Org. Chem. 1998, 63, 2742.
Br
at the tertiary C-H bond occurs because this is electronically
favored and is not sterically encumbered.13 Optimization
studies were conducted with three vinyldiazoacetates 2a-c.
The p-bromo derivative 2b gave the highest enantioselectivity
under refluxing conditions (95% ee), and this could be
(12) (a) Davies, H. M. L.; Hansen, T. J. Am. Chem. Soc. 1997, 119,
9075. (b) Davies, H. M. L.; Stafford, D. G.; Hansen, T. Org. Lett. 1999, 1,
233. (c) Davies, H. M. L.; Antoulinakis, E. G.; Hansen, T. Org. Lett. 1999,
1, 383. (d) Davies, H. M. L.; Hansen, T.; Hopper, D.; Panaro, S. A. J. Am.
Chem. Soc. 1999, 121, 6509. (e) Axten, J. M.; Ivy, R.; Krim, L.; Winkler,
J. D. J. Am. Chem. Soc. 1999, 121, 6511. (f) Davies, H. M. L.; Stafford, D.
G.; Hansen, T.; Churchill, M. R.; Keil, K. M. Tetrahedron Lett. 2000, 41,
2035. (g) Mu¨ller, P.; Tohill, S. Tetrahedron 2000, 56, 1725. (h) Davies, H.
M. L.; Antoulinakis, E. G. Org. Lett. 2000, 2, 4153. (i) Davies, H. M. L.;
Ren, P. J. Am. Chem. Soc. 2001, 123, 2070.
(13) Davies, H. M. L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc.
2000, 122, 3063.
3438
Org. Lett., Vol. 8, No. 16, 2006