A R T I C L E S
Moore et al.
ZnEt2/H2O mixture for copolymerization of CO2 and propylene
oxide50 inspired the development of a number of additional
heterogeneous systems.36-45 Discrete zinc phenoxides developed
by Darensbourg9-12 and ZnO/fluorinated carboxylic acid sys-
tems investigated by Beckman14,15 copolymerize cyclohexene
oxide (CHO) and CO2, exhibiting turnover frequencies (TOF)
of approximately 10 h-1. Chromium-based systems, including
chromium porphyrins studied by Kruper19 and Holmes20,21 and
chromium salen complexes reported by Darensbourg,18 give
TOFs of up to 200 h-1. Finally, highly active â-diiminate (BDI)
zinc carboxylates and alkoxides designed in our group afford
TOFs as high as 2300 h-1 for CHO and CO2 copolymerization
(Figure 1).51-56
Figure 1. Highly active [(BDI)Zn(µ-OMe)]2 complexes for the alternating
copolymerization of CHO and CO2.
Scheme 1. â-Diiminate Zinc Complexes as Catalysts for the
Alternating Copolymerization of Cyclohexene Oxide and CO2
Over the past five years, we have published several reports
describing well-defined, single-site BDI zinc complexes as
highly active catalysts for the synthesis of biodegradable
(20) Mang, S.; Cooper, A. I.; Colclough, M. E.; Chauhan, N.; Holmes, A. B.
Macromolecules 2000, 33, 303-308.
(21) Stamp, L. M.; Mang, S. A.; Holmes, A. B.; Knights, K. A.; de Miguel, Y.
R.; McConvey, I. F. Chem. Commun. 2001, 2502-2503.
(22) Eberhardt, R.; Allmendinger, M.; Luinstra, G. A.; Rieger, B. Organome-
tallics 2003, 22, 211-214.
Scheme 2. Catalytic Cycle Illustrating the Alternating Insertion of
CHO and CO2 in the Synthesis of Aliphatic Polycarbonates
(23) Eberhardt, R.; Allmendinger, M.; Rieger, B. Macromol. Rapid Commun.
2003, 24, 194-196.
(24) Kuran, W.; Listos, T. Macromol. Chem. Phys. 1994, 195, 977-984.
(25) Dinger, M. B.; Scott, M. J. Inorg. Chem. 2001, 40, 1029-1036.
(26) Nozaki, K.; Nakano, K.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 11008-
11009.
(27) Nakano, K.; Nozaki, K.; Hiyama, T. J. Am. Chem. Soc. 2003, 125, 5501-
5510.
(28) Kuran, W.; Listos, T.; Abramczyk, M.; Dawidek, A. J. Macromol. Sci.,
Pure Appl. Chem. 1998, A35, 427-437.
(29) Kim, H. S.; Kim, J. J.; Lee, B. G.; Jung, O. S.; Jang, H. G.; Kang, S. O.
Angew. Chem., Int. Ed. 2000, 39, 4096-4098.
(30) Kim, H. S.; Kim, J. J.; Lee, S. D.; Lah, M. S.; Moon, D.; Jang, H. G.
Chem. Eur. J. 2003, 9, 678-686.
(31) Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123, 11498-11499.
(32) Shen, Y. M.; Duan, W. L.; Shi, M. J. Org. Chem. 2003, 68, 1559-1562.
(33) Yano, T.; Matsui, H.; Koike, T.; Ishiguro, H.; Fujihara, H.; Yoshihara,
M.; Maeshima, T. Chem. Commun. 1997, 1129-1130.
(34) Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. J. Am.
Chem. Soc. 1999, 121, 4526-4527.
(35) Kawanami, H.; Ikushima, Y. Chem. Commun. 2000, 2089-2090.
(36) Jung, J. H.; Ree, M.; Chang, T. J. Polym. Sci., Part A: Polym. Chem.
1999, 37, 3329-3336.
polymers. These include the production of polycarbonates from
the alternating copolymerization of carbon dioxide and epoxides
(including cyclohexene oxide and propylene oxide) under low
temperatures and mild pressures (Schemes 1 and 2),51-56
heterotactic and syndiotactic poly(lactic acid) from rac-lactide
and meso-lactide, respectively,57,58 and poly(3-hydroxybutyrate)
from â-butyrolactone.59 Using these systems, narrow polydis-
persity indices (PDIs) and number average molecular weights
(Mn) dictated by monomer-to-initiator ratios are observed,
indicative of living polymerizations.60 Additionally, minor
changes in the ligand architecture result in dramatic enhance-
ments in polymerization rates.54,55
Homogeneous catalysts have distinct advantages over their
heterogeneous counterparts.61 Single-site homogeneous catalysts
are typically of the form LnMR, containing a readily modifiable
organic ligand set (Ln), a catalytically active metal center (M),
and a viable initiating group or polymer chain-end (R). These
homogeneous catalysts allow for modifications of (1) ligand
(37) Chen, L. B. Makromol. Chem. Macromol. Symp. 1992, 59, 75-82.
(38) Ree, M.; Bae, J. Y.; Jung, J. H.; Shin, T. J.; Hwang, Y. T.; Chang, T.
Polym. Eng. Sci. 2000, 40, 1542-1552.
(39) Ree, M.; Bae, J. Y.; Jung, J. H.; Shin, T. J. Korea Polym. J. 1999, 7, 333-
349.
(40) Ree, M.; Bae, J. Y.; Jung, J. H.; Shin, T. J. J. Polym. Sci., Part A: Polym.
Chem. 1999, 37, 1863-1876.
(41) Shen, Z. Q.; Chen, X. H.; Zhang, Y. F. Macromol. Chem. Phys. 1994,
195, 2003-2011.
(42) Tan, C. S.; Hsu, T. J. Macromolecules 1997, 30, 3147-3150.
(43) Yang, S. Y.; Fang, X. G.; Chen, L. B. Polym. AdV. Technol. 1996, 7, 605-
608.
(44) Liu, B. Y.; Zhao, X. J.; Wang, X. H.; Wang, F. S. J. Polym. Sci., Part A:
Polym. Chem. 2001, 39, 2751-2754.
(45) Hsu, T. J.; Tan, C. S. Polymer 2001, 42, 5143-5150.
(46) Zhang, M.; Chen, L. B.; Liu, B.; Yan, Z.; Qin, G.; Li, Z. Polym. Bull.
2001, 47, 255-260.
(47) Zhang, M.; Chen, L. B.; Qin, G.; Li, Z. M. Acta Polym. Sin. 2001, 422-
424.
(48) Zhang, M.; Chen, L. B.; Qin, G.; Liu, B.; Yan, Z.; Li, Z. J. Appl. Polym.
Sci. 2003, 87, 1123-1128.
(49) Wang, S. J.; Du, L. C.; Zhao, X. S.; Meng, Y. Z.; Tjong, S. C. J. Appl.
Polym. Sci. 2002, 85, 2327-2334.
(50) Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci., Part B: Polym. Lett.
1969, 7, 287-292.
(51) Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998,
120, 11018-11019.
(52) Coates, G. W.; Cheng, M. (Cornell Research Foundation), U.S. Pat.
6133402, 2002 (Chem Abstr. 2000, 132, 152332).
(57) Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem.
Soc. 1999, 121, 11583-11584.
(53) Cheng, M.; Darling, N. A.; Lobkovsky, E. B.; Coates, G. W. Chem.
Commun. 2000, 2007-2008.
(58) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky,
E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229-3238.
(59) Rieth, L. R.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem.
Soc. 2002, 124, 15239-15248.
(54) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky,
E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738-8749.
(55) Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W. Angew. Chem.,
Int. Ed. 2002, 41, 2599-2602.
(60) Matyjaszewski, K.; Mueller, A. H. E. Polym. Prepr. (American Chemical
Society, DiVision of Polymer Chemistry) 1997, 38 (1), 6-9.
(61) Coates, G. W. Chem. ReV. 2000, 100, 1223-1252.
(56) Allen, S. D.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem.
Soc. 2002, 124, 14284-14285.
9
11912 J. AM. CHEM. SOC. VOL. 125, NO. 39, 2003