Journal of the American Chemical Society
Page 8 of 9
(9) Metrangolo, P.; Resnati, G.; Bryce, D. L.; Desiraju, G. R.;
(29) Murray, J. S.; Lane, P.; Politzer, P. Expansion of the Sigma-
Hole Concept, J. Mol. Mod. 2009, 15, 723.
(30) Thomas, S. P.; Pavan, M. S.; Row, T. N. G. Experimental
Evidence for 'Carbon Bonding' in the Solid State from Charge
Density Analysis, Chem. Commun. 2014, 50, 49.
(31) Olah, G. A. Stable Carbocations. CXVIII. General Concept
and Structure of Carbocations Based on Differentiation of
Trivalent (Classical) Carbenium Ions from 3-Center Bound
Pentacoordinated or Tetracoordinated (Nonclassical)
Carbonium-Ions - Role of Carbocations in Electrophilic
Reactions, J. Am. Chem. Soc. 1972, 94, 808.
(32) Grabowski, S. J. Tetrel Bond-Sigma-Hole Bond as a
Preliminary Stage of the Sn2 Reaction, Phys. Chem. Chem.
Phys. 2014, 16, 1824.
Frontera, A.; Legon, A. C.; Nicotra, F.; Rissanen, K.;
Scheiner, S.; Terraneo, G. IUPAC Project 2016-001-2-300:
Categorizing Chalcogen, Pnictogen, and Tetrel Bonds, and
Other Interactions Involving Groups 14-16 Elements,
1
2
3
4
5
6
7
8
(10) Politzer, P.; Murray, J. S.; Janjic, G. V.; Zaric, S. D. Sigma-
Hole Interactions of Covalently-Bonded Nitrogen,
Phosphorus and Arsenic: A Survey of Crystal Structures,
Crystals 2014, 4, 12.
(11) Crabtree, R. H. Hypervalency, Secondary Bonding and
Hydrogen Bonding: Siblings under the Skin, Chem. Soc. Rev.
2017, 46, 1720.
(12) Gilli, G.; Gilli, P. Towards an Unified Hydrogen-Bond
Theory, J. Mol. Struct. 2000, 552, 1.
(13) Cleland, W. W. The Low-Barrier Hydrogen Bond in Enzymic
Catalysis, Adv. Phys. Org. Chem. 2010, 44, 1.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(33) Hojo, M.; Ichi, T.; Shibato, K. Synthesis and Structure of a
New Stable Carbocation Stabilized by 2 Neighboring Sulfur-
Atoms
-
Dimethyl-9,9-Bis(Methylthio)-1-Fluorenylcarbe-
(14) Cleland, W. W.; Frey, P. A.; Gerlt, J. A. The Low Barrier
Hydrogen Bond in Enzymatic Catalysis, J. Biol. Chem. 1998,
273, 25529.
(15) Perrin, C. L. Are Short, Low-Barrier Hydrogen Bonds
Unusually Strong?, Acc. Chem. Res. 2010, 43, 1550.
(16) Bogle, X. S.; Singleton, D. A. Isotope-Induced
Desymmetrization Can Mimic Isotopic Perturbation of
Equilibria. On the Symmetry of Bromonium Ions and
Hydrogen Bonds, J. Am. Chem. Soc. 2011, 133, 17172.
(17) Perrin, C. L.; Burke, K. D. Variable-Temperature Study of
nium Ion, J. Org. Chem. 1985, 50, 1478.
(34) Forbus, T. R.; Martin, J. C. Quest for an Observable Model
for the Sn2 Transition-State - Pentavalent Pentacoordinate
Carbon, J. Am. Chem. Soc. 1979, 101, 5057.
(35) Forbus, T. R.; Martin, J. C. An Observable Model for the Sn2
Transition-State - Hypervalent Trigonal Bipyramidal Carbon
(10-C-5), Heteroatom Chem. 1993, 4, 113.
(36) Forbus, T. R.; Kahl, J. L.; Faulkner, L. R.; Martin, J. C.
Electrochemical Evidence for Hypervalent (10-C-5)
Pentacoordinate Carbon, Heteroatom Chem. 1993, 4, 137.
(37) Akiba, K. Y.; Moriyama, Y.; Mizozoe, M.; Inohara, H.;
Nishii, T.; Yamamoto, Y.; Minoura, M.; Hashizume, D.;
Iwasaki, F.; Takagi, N.; Ishimura, K.; Nagase, S. Synthesis
and Characterization of Stable Hypervalent Carbon
Hydrogen-Bond
Symmetry
in
Cyclohexene-1,2-
Dicarboxylate Monoanion in Chloroform-D, J. Am. Chem.
Soc. 2014, 136, 4355.
(18) Bedin, M.; Karim, A.; Reitti, M.; Carlsson, A.-C. C.; Topic,
F.; Cetina, M.; Pan, F. F.; Havel, V.; Al-Ameri, F.; Sindelar,
V.; Rissanen, K.; Grafenstein, J.; Erdelyi, M. Counterion
Influence on the N-I-N Halogen Bond, Chem. Sci. 2015, 6,
3746.
(19) Carlsson, A.-C. C.; Gräfenstein, J.; Budnjo, A.; Laurila, J. L.;
Bergquist, J.; Karim, A.; Kleinmaier, R.; Brath, U.; Erdelyi,
M. Symmetric Halogen Bonding Is Preferred in Solution, J.
Am. Chem. Soc. 2012, 134, 5706.
(20) Carlsson, A.-C. C.; Gräfenstein, J.; Laurila, J. L.; Bergquist,
J.; Erdelyi, M. Symmetry of [N-X-N]+ Halogen Bonds in
Solution, Chem. Commun. 2012, 48, 1458.
(21) Carlsson, A.-C. C.; Mehmeti, K.; Uhrbom, M.; Karim, A.;
Bedin, M.; Puttreddy, R.; Kleinmaier, R.; Neverov, A. A.;
Nekoueishahraki, B.; Gräfenstein, J.; Rissanen, K.; Erdelyi,
M. Substituent Effects on the [N-I-N]+ Halogen Bond, J. Am.
Chem. Soc. 2016, 138, 9853.
(22) Hakkert, S. B.; Erdelyi, M. Halogen Bond Symmetry: The N-
X-N Bond, J. Phys. Org. Chem. 2015, 28, 226.
(23) Karim, A.; Reitti, M.; Carlsson, A.-C. C.; Gräfenstein, J.;
Erdelyi, M. The Nature of [N-Cl-N]+ and [N-F-N]+ Halogen
Bonds in Solution, Chem. Sci. 2014, 5, 3226.
(24) Dzolic, Z.; Beyeh, N. K.; Cetina, M.; Turunen, L.; Rissanen,
K. Self-Complementary Dimers of Oxalamide-Functionalized
Resorcinarene Tetrabenzoxazines, Chem. Asian. J. 2018, 13,
164.
(25) Turunen, L.; Peuronen, A.; Forsblom, S.; Kalenius, E.;
Lahtinen, M.; Rissanen, K. Tetrameric and Dimeric [Ni+ N]
Halogen-Bonded Supramolecular Cages, Chem. Eur. J. 2017,
23, 11714.
Compounds (10-C-5) Bearing
a
2,6-Bis(P-Substituted
Phenyloxymethyl)Benzene Ligand, J. Am. Chem. Soc. 2005,
127, 5893.
(38) Yamashita, M.; Yamamoto, Y.; Akiba, K. Y.; Hashizume, D.;
Iwasaki, F.; Takagi, N.; Nagase, S. Syntheses and Structures
of Hypervalent Pentacoordinate Carbon and Boron
Compounds Bearing an Anthracene Skeleton-Elucidation of
Hypervalent Interaction Based on X-Ray Analysis and DFT
Calculation, J. Am. Chem. Soc. 2005, 127, 4354.
(39) Martin, J. C.; Basalay, R. J. Degenerate Interconversions of
Sulfonium Ions Involving Intramolecular Nucleophilic
Displacement by Neighboring Sulfide Sulfur - Question of an
Intermediate in Sn2 Displacement, J. Am. Chem. Soc. 1973,
95, 2572.
(40) Forbus, T. R.; Kahl, J. L.; Faulkner, L. R.; Martin, J. C.
Electrochemical Evidence for Hypervalent (10-C-5)
Pentacoordinate Carbon, Heteroatom Chem. 1993, 4, 137.
(41) Fernandez, I.; Uggerud, E.; Frenking, G. Stable
Pentacoordinate Carbocations: Structure and Bonding, Chem.
Eur. J. 2007, 13, 8620.
(42) Musher, J. I. Chemistry of Hypervalent Molecules, Angew.
Chem. Int. Ed. 1969, 8, 54.
(43) Pimentel, G. C. The Bonding of Trihalide and Bifluoride Ions
by the Molecular Orbital Method, J. Chem. Phys. 1951, 19,
446.
(44) Firestone, R. A. Application of Linnett Electronic Theory to
Organic Chemistry .4. Sn2 Transition State, J. Org. Chem.
1971, 36, 702.
(45) Landrum, G. A.; Goldberg, N.; Hoffmann, R. Bonding in the
-
(26) Turunen, L.; Warzok, U.; Puttreddy, R.; Beyeh, N. K.;
Schalley, C. A.; Rissanen, K. [Ni(+) N] Halogen-Bonded
Trihalides (X3 ), Mixed Trihalides (X2Y-) and Hydrogen
Bihalides (X2H-). The Connection between Hypervalent,
Electron-Rich Three-Center, Donor-Acceptor and Strong
Hydrogen Bonding, J. Chem. Soc. Dalton. 1997, 3605.
(46) Shaik, S. S.; Bar, R. How Important Is Resonance in Organic-
Species, Nouv. J. Chim. 1984, 8, 411.
Dimeric
Cavitands, Angew. Chem. Int. Ed. Engl. 2016, 55, 14033.
(27) Mani, D.; Arunan, E. The (X=O/F,
X-C...Y
Capsules
from
Tetrakis(3-Pyridyl)Ethylene
Y=O/S/F/Cl/Br/N/P) 'Carbon Bond' and Hydrophobic
Interactions, Phys. Chem. Chem. Phys. 2013, 15, 14377.
(28) Southern, S. A.; Bryce, D. L. NMR Investigations of
Noncovalent Carbon Tetrel Bonds. Computational
Assessment and Initial Experimental Observation, J. Phys.
Chem. A 2015, 119, 11891.
(47) Pierrefixe, S. C. A. H.; van Stralen, S. J. M.; van Stralen, J.
N. P.; Guerra, C. F.; Bickelhaupt, F. M. Hypervalent Carbon
Atom: "Freezing" the SN2 Transition State, Angew. Chem.
Int. Ed. 2009, 48, 6469.
8
ACS Paragon Plus Environment