Page 9 of 11
Journal of the American Chemical Society
(17)
Olivo, G.; Cussó, O.; Borrell, M.; Costas, M. Oxidation of alkane
Author Contributions
and alkene moieties with biologically inspired nonheme iron
catalysts and hydrogen peroxide: from free radicals to
stereoselective transformations J. Biol. Inorg. Chem. 2017, 22,
425–452.
Bryliakov, K. P. Catalytic Asymmetric Oxygenations with the
Environmentally Benign Oxidants H2O2 and O2 Chem. Rev.
2017, 117, 11406–11459.
Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q.
Enantioselective C(sp3)‒H bond activation by chiral transition
metal catalysts Science 2018, 359, eaao4798.
Chen, M. S.; White, M. C. A predictably selective aliphatic C-H
oxidation reaction for complex molecule synthesis. Science 2007,
318, 783–787.
Bigi, M. A.; Reed, S. A.; White, M. C. Directed metal (oxo)
aliphatic C-H hydroxylations: overriding substrate bias. J. Am.
Chem. Soc. 2012, 134, 9721–9726.
Bigi, M. A.; Reed, S. A.; White, M. C. Diverting non-haem iron
catalysed aliphatic C-H hydroxylations towards desaturations.
Nat. Chem. 2011, 3, 216–222.
Manning, J.; Tavanti, M.; Porter, J. L.; Kress, N.; De Visser, S.
P.; Turner, N. J.; Flitsch, S. L. Regio- and Enantio-selective
Chemo-enzymatic C−H-Lactonization of Decanoic Acid to (S)-
δ-Decalactone Angew. Chemie Int. Ed. 2019, 58, 5668–5671.
Rouquet, G.; Chatani, N. Catalytic Functionalization of C(sp2)-H
and C(sp3)-H Bonds by Using Bidentate Directing Groups
Angew. Chemie Int. Ed. 2013, 52, 11726–11743.
He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Palladium-
Catalyzed Transformations of Alkyl C–H Bonds Chem. Rev.
2017, 117, 8754–8786.
Dolui, P.; Das, J.; Chandrashekar, H. B.; Anjana, S. S.; Maiti, D.
Ligand-Enabled PdII-Catalyzed Iterative γ-C(sp3)−H Arylation
of Free Aliphatic Acid Angew. Chemie Int. Ed. 2019, 58, 13773–
13777.
Rasik, C. M.; Brown, M. K. Total Synthesis of Gracilioether F:
Development and Application of Lewis Acid Promoted Ketene–
Alkene [2+2] Cycloadditions and Late-Stage C-H Oxidation
Angew. Chemie Int. Ed. 2014, 53, 14522–14526.
Ye, Q.; Qu, P.; Snyder, S. A. Total Syntheses of Scaparvins B, C,
and D Enabled by a Key C–H Functionalization J. Am. Chem.
Soc. 2017, 139, 18428–18431.
Hung, K.; Condakes, M. L.; Morikawa, T.; Maimone, T. J.
Oxidative Entry into the Illicium Sesquiterpenes: Enantiospecific
Synthesis of (+)-Pseudoanisatin J. Am. Chem. Soc. 2016, 138,
16616–16619.
Hung, K.; Condakes, M. L.; Novaes, L. F. T.; Harwood, S. J.;
Morikawa, T.; Yang, Z.; Maimone, T. J. Development of a
Terpene Feedstock-Based Oxidative Synthetic Approach to the
Illicium Sesquiterpenes J. Am. Chem. Soc. 2019, 141, 3083–3099.
Burns, A. S.; Rychnovsky, S. D. Total Synthesis and Structure
Revision of (−)-Illisimonin A, a Neuroprotective Sesquiterpenoid
from the Fruits of Illicium simonsii J. Am. Chem. Soc. 2019, 141,
13295–13300.
Rao, P.; Hu, J.; Xuan, J.; Ding, H. Total Synthesis of (−)-
Pavidolide B: A Ring Contraction Strategy J. Org. Chem. 2019,
84, 9385–9392.
Dantignana, V.; Milan, M.; Cussó, O.; Company, A.; Bietti, M.;
Costas, M. Chemoselective Aliphatic C–H Bond Oxidation
Enabled by Polarity Reversal ACS Cent. Sci. 2017, 3, 1350–1358.
P. Roberts, B. Polarity-reversal catalysis of hydrogen-atom
abstraction reactions: concepts and applications in organic
chemistry Chem. Soc. Rev. 1999, 28, 25–35.
1
2
3
4
5
6
7
8
‡These authors contributed equally.
Notes
The authors declare no competing financial interest.
(18)
(19)
(20)
(21)
(22)
(23)
ACKNOWLEDGMENT
Support by the Spanish Ministry of Science (PGC2018-101737-B-
eralitat de Catalunya (ICREA Academia Award to M.C. and
2014SGR 862), and from EU (MSCA-ITN-2015 Action
NoNoMeCat, 675020) is acknowledged. The authors thank M. Bor-
rell for providing an H218O2 sample.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1)
Gutekunst, W. R.; Baran, P. S. C-H functionalization logic in total
synthesis Chem. Soc. Rev. 2011, 40, 1976–1991.
(2)
Frost, J. R.; Huber, S. M.; Breitenlechner, S.; Bannwarth, C.;
Bach, T. Enantiotopos-selective C-H oxygenation catalyzed by a
supramolecular ruthenium complex Angew. Chemie - Int. Ed.
2015, 54, 691–695.
(3)
Talsi, E. P.; Samsonenko, D. G.; Ottenbacher, R. V; Bryliakov,
K. P. Highly Enantioselective C−H Oxidation of Arylalkanes
with H2O2 in the Presence of Chiral Mn-Aminopyridine
Complexes ChemCatChem 2017, 9, 4580–4586.
(24)
(25)
(26)
(4)
(5)
Milan, M.; Bietti, M.; Costas, M. Enantioselective aliphatic C–H
bond oxidation catalyzed by bioinspired complexes Chem.
Commun. 2018, 54, 9559–9570.
Ottenbacher, R. V; Talsi, E. P.; Rybalova, T. V; Bryliakov, K. P.
Enantioselective Benzylic Hydroxylation of Arylalkanes with
H2O2 in Fluorinated Alcohols in the Presence of Chiral Mn
Aminopyridine Complexes ChemCatChem 2018, 10, 5323–5330.
Burg, F.; Gicquel, M.; Breitenlechner, S.; Pöthig, A.; Bach, T.
Site- and Enantioselective C-H Oxygenation Catalyzed by a
Chiral Manganese Porphyrin Complex with a Remote Binding
Site Angew. Chemie Int. Ed. 2018, 57, 2953–2957.
Qiu, B.; Xu, D.; Sun, Q.; Miao, C.; Lee, Y.-M.; Li, X.-X.; Nam,
W.; Sun, W. Highly Enantioselective Oxidation of Spirocyclic
Hydrocarbons by Bioinspired Manganese Catalysts and
Hydrogen Peroxide ACS Catal. 2018, 8, 2479–2487.
Milan, M.; Bietti, M.; Costas, M. Highly Enantioselective
Oxidation of Nonactivated Aliphatic C–H Bonds with Hydrogen
Peroxide Catalyzed by Manganese Complexes ACS Cent. Sci.
2017, 3, 196–204.
(27)
(6)
(7)
(8)
(9)
(28)
(29)
(30)
(31)
Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Catalytic
Enantioselective Transformations Involving C–H Bond Cleavage
by Transition-Metal Complexes Chem. Rev. 2017, 117, 8908–
8976.
(10)
(11)
Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q.
Enantioselective C(sp3)‒H bond activation by chiral transition
metal catalysts Science 2018, 359, eaao4798.
Chen, G.; Gong, W.; Zhuang, Z.; Andra, M. S.; Chen, Y.-Q.;
Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Ligand-
accelerated enantioselective methylene C(sp3)-H bond activation
Science 2016, 353, 1023–1027.
(32)
(33)
(34)
(35)
(36)
(12)
(13)
Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L.
Site-selective and stereoselective functionalization of unactivated
C–H bonds Nature 2016, 533, 230–234.
Xing, Q.; Chan, C.-M.; Yeung, Y.-W.; Yu, W.-Y. Ruthenium(II)-
Catalyzed
Enantioselective γ-Lactams
Formation by
Wang, D.; Shuler, W. G.; Pierce, C. J.; Hilinski, M. K. An
Iminium Salt Organocatalyst for Selective Aliphatic C–H
Hydroxylation Org. Lett. 2016, 18, 3826–3829.
Berkessel, A.; Adrio, J. A. Dramatic Acceleration of Olefin
Epoxidation in Fluorinated Alcohols:ꢁ Activation of Hydrogen
Peroxide by Multiple H-Bond Networks J. Am. Chem. Soc. 2006,
128, 13412–13420.
Schwertfeger, H.; Fokin, A. A.; Schreiner, P. R. Diamonds are a
Chemist’s Best Friend: Diamondoid Chemistry Beyond
Adamantane Angew. Chemie Int. Ed. 2008, 47, 1022–1036.
Zalikowski, J. A.; Gilbert, K. E.; Borden, W. T. Oxidation of 7-
Intramolecular C–H Amidation of 1,4,2-Dioxazol-5-ones J. Am.
Chem. Soc. 2019, 141, 3849–3853.
(14)
(15)
(16)
Park, Y.; Chang, S. Asymmetric formation of γ-lactams via C–H
amidation enabled by chiral hydrogen-bond-donor catalysts Nat.
Catal. 2019, 2, 219–227.
Reyes, R. L.; Iwai, T.; Maeda, S.; Sawamura, M. Iridium-
Catalyzed Asymmetric Borylation of Unactivated Methylene
C(sp3)–H Bonds J. Am. Chem. Soc. 2019, 141, 6817–6821.
White, M. C.; Zhao, J. Aliphatic C–H Oxidations for Late-Stage
Functionalization J. Am. Chem. Soc. 2018, 140, 13988–14009.
(37)
(38)
9
ACS Paragon Plus Environment