J. Pontillo et al. / Bioorg. Med. Chem. Lett. 15 (2005) 2541–2546
2545
difference in the amide group between 5b and 14c causes
profound pharmacological changes in these two
compounds.
References and notes
1. (a) Gantz, I.; Fong, T. M. Am. J. Physiol. Endocrinol.
Metab. 2003, 284, E468; (b) Goodfellow, V.; Saunders, J.
Curr. Top. Med. Chem. 2003, 3, 855.
In addition to high affinity on human MC4R, com-
pound 14c bound to the mouse MC4R with a Ki value
of 3.7 nM, demonstrating no selectivity between these
two species. Thus, we were able to utilize compounds
from this series to examine the ability of a small mole-
cule MC4R antagonist to stimulate food intake in mice.
Unfortunately, many of the potent MC4R antagonists
listed in Table 3 suffered from either poor absorption
associated with high hydrophilicity (5b, logD = 1.1,
F = 1%), or metabolic instability in liver microsomes
(14c, Clint = 1750 mL/min kg in mouse liver micro-
somes), thus precluding them from peripheral adminis-
tration. Therefore, we measured the efficacy by directly
delivering the compound into the mouse brain via intra-
cerebroventricular (icv) administration. Female CD-1
mice were divided into four groups (n = 10/group) and
injected, with distilled water, 0.3, 3, or 10 nmol of 14c,
into the lateral/third cerebral ventricles using a free-
hand injection method.13 Bonferroni-adjusted t-test post
hoc comparisons indicated that compound 14c signifi-
cantly increased food consumption at the highest dose
given at all the time points measured (all Ps < 0.01)
(Fig. 4).
2. Adage, T.; Scheurink, J. W.; de Boer, S. F.; de Vries, K.;
Konsman, J. P.; Kuipers, F.; Adan, R. A. H.; Baskin, D.
G.; Schartz, M. W.; Van Dijk, G. Neuroreport 2001, 12,
1281.
3. (a) Foster, A. C.; Joppa, M.; Markinson, S.; Gogas, K. R.;
Fleck, B. A.; Murphy, B. J.; Wolff, M.; Cismowski, M. J.;
Ling, N.; Goodfellow, V. S.; Chen, C.; Saunders, J.;
Conlon, P. J. Ann. N.Y. Acad. Sci. 2003, 994, 103; (b)
Schioth, H. B.; Kask, A.; Mutulis, F.; Muceniece, R.;
Mutule, I.; Mutule, I.; Mandrika, I.; Wikberg, J. E. S.
Biochem. Biophys. Res. Commun. 2003, 301, 399.
4. (a) Chaki, S.; Ogawa, S.; Todaa, Y.; Funakoshi, T.;
Okuyama, S. Eur. J. Pharmacol. 2003, 474, 95; (b) Chaki,
S.; Hirota, S.; Funakoshi, T.; Suzuki, Y.; Suetake, S.;
Okubo, T.; Ishii, T.; Nakazato, A.; Okuyama, S. J.
Pharmacol. Exp. Ther. 2003, 304, 818.
5. (a) Bellasio, S.; Nicolussi, E.; Bertorelli, R.; Reggiani, A.
Eur. J. Pharmacol. 2003, 482, 127; (b) Beltramo, M.;
Campanella, M.; Tarozzo, G.; Fredduzzi, S.; Corradini,
L.; Forlani, A.; Bertorelli, R.; Reggiani, A. Mol. Brain
Res. 2003, 118, 111; (c) Bertorelli, R.; Fredduzzi, S.;
Tarozzo, G.; Campanella, M.; Grundy, R.; Beltramo, M.;
Reggiani, A. Behav. Brain Res. 2005, 157, 55.
6. Arasasingham, P. A.; Fotsch, C.; Ouyang, X.; Norman,
M. H.; Kelly, M. G.; Stark, K. L.; Karbon, B.; Hale, C.;
Baumgartner, J. W.; Zambrano, M.; Cheetham, J.;
Tamayo, N. A. J. Med. Chem. 2003, 46, 9.
7. (a) Vos, T. J.; Caracoti, A.; Che, J.; Dai, M.; Farrer, C. A.;
Forsyth, N. E.; Drabic, S. V.; Horlick, R. A.; Lamppu, D.;
Yowe, D. L.; Balani, S.; Li, P.; Zeng, H.; Joseph, I. B. J.
K.; Rodriguez, L. E.; Claiborne, C. F. J. Med. Chem.
2004, 47, 1602; (b) Marsilje, T. H.; Roses, J. B.; Calder-
wood, E. F.; Stroud, S. G.; Forsyth, N. E.; Blackburn, C.;
Yowe, D. L.; Miao, W.; Drabic, S. V.; Bohane, M. D.;
Daniels, J. S.; Li, P.; Wu, L.; Patane, M. A.; Claiborne, C.
F. Bioorg. Med. Chem. Lett. 2004, 14, 3721.
8. (a) Dyck, B.; Parker, J.; Phillips, T.; Carter, L.; Murphy,
B.; Summers, R.; Hermann, J.; Baker, T.; Cismowski, M.;
Saunders, J.; Goodfellow, V. Bioorg. Med. Chem. Lett.
2003, 13, 3793; (b) Pontillo, J.; Tran, J. A.; Arellano, M.;
Fleck, B. A.; Huntley, R.; Marinkovic, D.; Lanier, M.;
Nelson, J.; Parker, J.; Saunders, J.; Tucci, F. C.; Jiang, W.;
Chen, C. W.; White, N. S.; Foster, A.; Chen, C. Bioorg.
Med. Chem. Lett. 2004, 14, 4417; (c) Pontillo, J.; Tran, J.
A.; Fleck, B. A.; Marinkovic, D.; Arellano, M.; Tucci, F.
C.; Lanier, M.; Nelson, J.; Parker, J.; Sauders, J.; Murphy,
B.; Foster, A. C.; Chen, C. Bioorg. Med. Chem. Lett. 2004,
14, 5605.
9. A series of phenylpiperazines bearing a 3-(4-chlorophen-
yl)propionyl group has been reported without significant
cAMP stimulation, see: Xi, N.; Hale, C.; Kelly, M. G.;
Norman, M. H.; Stec, M.; Xu, S.; Baumgartner, J. W.;
Fotsch, C. Bioorg. Med. Chem. Lett. 2004, 14, 377.
10. Chen, C.; Pontillo, J.; Fleck, B. A.; Gao, Y.; Wen, J.;
Tran, J. A.; Tucci, F. C.; Marinkovic, D.; Foster, A. C.;
Saunders, J. J. Med. Chem. 2004, 47, 6821.
In conclusion, we have synthesized a series of (R)-2,4-
dichlorophenylalanine derivatives as potent antagonists
of MC4R. These compounds are highly selective over
MC3R, as well as other human melanocortin receptor
subtypes. One compound from the series, 14c, had Ki
values of 3.2 and 790 nM, respectively, at the melano-
cortin-4 and -3 receptors. This compound was also dem-
onstrated to be an insurmountable antagonist in the
inhibition of a-MSH-stimulated cAMP release by a
Schild analysis, possibly due to slow dissociation rate.14
Compound 14c potently stimulated food intake in sati-
ated mice when given intracerebroventricularly.
vehicle
0.8
0.3 nmol
*
3 nmol
10 nmol
*
*
0.6
0.4
0.2
0.0
*
1
2
4
6
11. Several phenylpiperazines bearing an amide side-chain
have been reported to be potent and selective antagonists
of the melanocortin-4 receptor, see Ref. 9.
12. Nickolls, S. A.; Cismowski, M. I.; Wang, X.; Wolff, M.;
Conlon, P. J.; Maki, R. A. J. Pharmacol. Exp. Ther. 2003,
304, 1217.
Time (h)
Figure 4. Effect of 14c on cumulative food intake in satiated mice.
Mice (n = 10/group) were given vehicle (distilled water) or the MC4R
antagonist, 14c, via icv injection and food intake was measured over
the following 6 h. Cumulative food intake was significantly increased
by the 10 nmol dose of 14c relative to vehicle at all time points
(*P < 0.01).
13. Briefly, following a short anesthetization with isoflurane
gas, a 30-gauge needle modified to a length of 4 mm was