862
G. Durand et al. / Bioorg. Med. Chem. Lett. 13 (2003) 859–862
7. Schulz, J. B.; Henshaw, D. R.; Matthews, R. T.; Beal, M. F.
Exp. Neurol. 1995, 132, 279.
8. Janzen, E. G.; Zawalski, R. C. J. Org. Chem. 1978, 43,
1900. Janzen, E. G.; Dudley, R. L.; Shetty, R. V. J. Am. Chem.
Soc. 1979, 101, 243.
9. Janzen, E. G.; West, M. S.; Kotake, Y.; Dubosc, C. M. J.
Biochem. Biophys. Meth. 1996, 32, 183.
10. Thomas, C. E.; Ohlweiler, D. F.; Taylor, V. L.; Schmidt,
C. J. J. Neurochem. 1997, 68, 1173.
11. Ouari, O.; Polidori, A.; Pucci, B.; Tordo, P.; Chalier, F. J.
Org. Chem. 1999, 64, 3554.
12. Partially published in Geromel, V.; Kadhom, N.; Cebalos-
Picot, I.; Ouari, O.; Polidori, A.; Munnich, A.; Rotig, A.;
Rustin, P. Hum. Mol. Genet. 2001, 10, 1221.
13. Ouari, O.; Chalier, F.; Bonaly, R.; Pucci, B.; Tordo, P. J.
Chem. Soc. Perkin Trans. 2 1998, 2299.
14. Vaultier, M.; Knouzi, N.; Carrie, R. Tetrahedron Lett.
1983, 24, 763.
Figure 2. Caspase-3 activities (kit Sigma CASP3C) in cultured neuro-
nal cells after 20 h exposure to variable concentrations of nitrone 2,
PBN and DMPO (after 8 days of cells culture). After incubation with
nitrones, apoptosis was induced by the addition of 0.05 mM hydrogen
peroxide. Values are mean Æ SD of four experiments.
15. Kende, A. S.; Mendoza, J. S. Tetrahedron Lett. 1991, 32,
1699.
1
16. Determined by H NMR analysis.
17. Nitrone 2 analysis: Rf: 0.52(ethyl acetate/methanol/
water 7:2:1). Mp: 115 ꢀC (dec). [a]D=+17.2(05.2c, 1,
CH3OH). 1H NMR (250 MHz, CD3OD) d 8.28 (2H, d,
J=8.25 Hz, H arom.), 7.82 (1H, s, CH=N(O)), 7.42 (2H,
d, J=8.25 Hz, H arom.), 4.65–4.35 (4H, m, CH2-NH, H-10,
H-2), 4.25 (1H, m, H-3), 4.00–3.35 (10H, m, H-4, H-5,
CH2-OH, H-40, H-50, H-30, H-20), 3.01 (2H, s, CIV–CH2–S),
2.43 (2H, t, J=7.3 Hz, CH2–S), 1.61 (6H, s, CH3 tert-butyl),
1.44 (2H, m, CH2–CH2–S), 1.30–1.10 (10H, m, CH2), 0.87
(3H, t, J=6.9 Hz, CH3 chain). 13C NMR (62.86 MHz,
cultured neuronal cells at a threshold of concentration.
Further analysis of all compounds of this new spin traps
family is currently underway in order to determine the
impact of both the nature of the hydrophobic chain
(hydro or perfluorocarbon), and that of the bond
between the hydrophobic chain and the nitrone moiety,
on their antiapoptosis activity.
CD3OD)
(CH=N(O)), 131.1 (CH arom.), 130.6 (CIV arom.), 128.3 (CH
d
175.3 (CO–NH), 143.4 (CIV arom.), 136.0
0
arom.), 105.8 (CH-10), 83.3 (CH-4), 77.2(CH-5 ), 74.8 (CIV),
References and Notes
74.6 (CH-30 or CH-20), 74.1 (CH-2), 73.2 (CH-5), 72.8 (CH-30
or CH-20), 72.5 (CH-3), 70.4 (CH-40), 63.8, 62.7 (CH2-6, CH2-
60), 43.5, 43.0 (CH2–NH, CH2–S), 34.2(CH 2–S), 32.9, 31.0,
30.3, 30.2, 29.7 (CH2), 26.0 (CH3 tert-butyl), 23.7 (CH2), 14.4
(CH3). UV (MeOH, nm): lmax=298.8. FABMS (m-nitro-
benzyl alcohol matrix): m/z=729 [M+K]+; 713 [M+Na]+.
Elemental analysis C32H54N2O12S, 3H2O (744.9): calcd C,
51.60; H, 8.12; N, 3.76; S, 4.30; found C, 51.83; H=7.66;
N=3.70; S=4.25.
1. Richardson, J. S. Ann. N.Y. Acad. Sci. 1993, 695, 73.
2. Ames, B. N.; Shigenaga, M. K.; Hagen, T. M. Proc. Natl.
Acad. Sci. U.S.A. 1993, 90, 7915.
3. Kontos, H. A. Chem. Biol. Int. 1989, 72, 229.
4. Sack, C. A.; Socci, D. J.; Crandall, B. M.; Arendash, G. W.
Neurosci. Lett. 1996, 205, 181.
5. Yue, T. L.; Gu, J. L.; Lysko, P. G.; Cheng, H. Y.; Barone,
F. C.; Feuerstein, G. Brain Res. 1992, 574, 193.
6. Schulz, J. B.; Henshaw, D. R.; Siwek, D.; Jenkins, B. G.;
Ferrante, R. J.; Cipollini, P. B.; Kowall, N. W.; Rosen, B. R.;
Beal, M. F. J. Neurochem. 1995, 64, 2239.
18. Hansen, M. B.; Nielsen, S. E.; Berg, K. J. Immunol. Meth.
1989, 119, 203.
19. Marks, N.; Berg, M. J.; Guidotti, A.; Saito, M. J. Neu-
rosci. Res. 1998, 52, 334.