The general mechanism for acridinium salt chemilumi-
nescence is depicted in Scheme 1.7,13 Chemiluminescence
emitting species is dissociated from potential collisional
quenching entities (i.e., proteins). In contrast, a derivative
linked to ligands of interest through the acridinium ring
results in generation of an excited-state acridone that remains
tethered to the ligand upon chemiluminescence triggering.
Tethered acridinium light-emitting species have the potential
to undergo collisional quenching or to serve as donors in
energy transfer processes.2
Scheme 1. Proposed Mechanism of Acridinium Salt
Chemiluminescence
Nonacridinium salt-based reagents have been described
in luminescence assays that rely on quenching or energy
transfer. Specifically, assays for biotin have been developed
utilizing the bioluminescent photoprotein aequorin.14-19 Bio-
luminescence resonance energy transfer (BRET) has recently
been demonstrated to be useful for studies of protein-protein
interactions.20-22 Similarly, chemiluminescence resonance
energy transfer assays utilizing aminobutylethylisoluminol
(ABEI) as the luminescent donor and fluorescein as the
acceptor have been successfully developed for several
biological ligands of interest.23-27
Here we describe the synthesis of an N10-carboxyalkyl-
functionalized acridinium label. The N10-carboxyalkyl acri-
dinium label was prepared for direct comparison to an
analogous acridinium label with the reactive functionality
for coupling to ligands of interest incorporated into the
sulfonamide moiety. The labels were coupled to a derivative
of biotin, generating model tethered and releasable acridone-
generating tracers. The resulting biotin tracers were evaluated
in terms of their chemiluminescent properties in buffer alone
and in the presence of the binding protein avidin.
is triggered by the addition of hydrogen peroxide anion to
the 9-position of the acridinium salt, yielding an acridan
hydroperoxide. Subsequent deprotonation of the hydro-
peroxide and attack at the carbonyl carbon provides a
tetrahedral spirodioxetane intermediate. Decomposition of
the unstable spirodioxetane intermediate results in formation
of an excited-state acridone with concomitant elimination
of CO2 and a leaving group X. Light is generated upon return
of the excited-state acridone to the ground state.
The mechanism in Scheme 1 illustrates that the site of
ligand attachment to an acridinium salt may impart a subtle
but potentially very important characteristic to the label.
Acridinium salt derivatives linked to ligands of interest
through the ester or sulfonamide moiety result in generation
of an excited-state acridone that is released upon triggering
of the chemiluminescent reaction (Scheme 2). From a
sensitivity standpoint, such a process is desirable, as the light-
The N10-carboxyalkyl-functionalized acridinium-9-carbox-
amide label 6 that results in a tethered acridone species upon
chemiluminescence triggering was synthesized as depicted
(9) Zomer, G.; Staventuiter, J. F. C. Anal. Chim. Acta 1989, 227, 11-
19.
(10) Sato, N. Tetrahedron Lett. 1996, 37, 8519-8522.
(11) Razavi, Z.; McCapra, F. Luminescence 2000, 15, 239-244.
(12) Mattingly, P. G.; Bennett, L. U.S. Pat. 5468646, 1995.
(13) Rak, J.; Skurski, P.; Blazejowski, J. J. Org. Chem. 1999, 64, 3002-
3008.
(14) Adamczyk, M.; Moore, J. A.; Shreder, K. Org. Lett. 2001, 3, 1797-
1800.
(15) Witkowski, A.; Ramanathan, S.; Daunert, S. Anal. Chem. 1994, 66,
1837-1840.
Scheme 2
(16) Crofcheck, C. L.; Grosvenor, A. L.; Anderson, K. W.; Lumpp, J.
K.; Scott, D. L.; Daunert, S. Anal. Chem. 1997, 69, 4768-4772.
(17) Feltus, A.; Grosvenor, A. L.; Conover, R. C.; Anderson, K. W.;
Daunert, S. Anal. Chem. 2001, 73, 1403-1407.
(18) Grosvenor, A. L.; Feltus, A.; Conover, R. C.; Daunert, S.; Anderson,
K. W. Anal. Chem. 2000, 72, 2590-2594.
(19) Gorokhovatsky, A. Y.; Rudenko, N. V.; Marchenkov, V. V.;
Skosyrev, V. S.; Arzhanov, M. A.; Burkhardt, N.; Zakharov, M. V.;
Semisotnov, G. V.; Vinokurov, L. M.; Alakhov, Y. B. Anal. Biochem. 2003,
313, 68-75.
(20) Boute, N.; Jockers, R.; Issad, T. Trends Pharmacol. Sci. 2002, 23,
351-354.
(21) Angers, S.; Salahpour, A.; Joly, E.; Hilairet, S.; Chelsky, D.; Dennis,
M.; Bouvier, M. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 3684-3689.
(22) Xu, Y.; Piston, D. W.; Hirschie Johnson, C. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 151-156.
(23) Patel, A.; McCapra, F.; Davies, C. J.; Campbell, A. K. Biochem.
Soc. Trans. 1983, 11, 196-197.
(24) Patel, A.; Davies, C. J.; Campbell, A. K.; McCapra, F. Anal.
Biochem. 1983, 129, 162-169.
(25) Patel, A.; Campbell, A. K. Clin. Chem. 1983, 29, 1604-1608.
(26) Campbell, A. K.; Patel, A. Biochem. J. 1983, 216, 185-194.
(27) Williams, E. J.; Campbell, A. K. Anal. Biochem. 1986, 155, 249-
255.
3780
Org. Lett., Vol. 5, No. 21, 2003