Condition-Directable Reaction
399
modified proceduces including in situ derivation. J. Am. Chem. Soc. 1987, 109,
5765–5780; (b) Trost, B. M.; Franken, D. L. Asymmetric transition
metal-catalyzed allelic alkylations. Chem. Rev. 1996, 96, 395–422;
(c) Noyori, R. Asymmetric catalysis: science and opportunities (Nobel lecture).
Anew. Chem. Int. Ed. 2002, 41, 2008–2022; (d) Yoon, T. P.; Jacobson, E. N. Pri-
vileged chiral catalysts. Science 2003, 299, 1619–1693.
2. (a) Evans, D. A. Studies in asymmetric synthesis. The development of practical
chiral enolate synthons. Aldrichimica Acta 1982, 15, 23–32; (b) Brown, H. C.;
Bhat, K. S. Enantiomeric (E)- and (Z)-crotyldiisopinocampeyboranes. Synthesis
in high optical purity of all four possible stereoisomers of ß-methylhomoallyl
alcohols. J. Am. Chem. Soc. 1986, 108, 293–294.
3. (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Substrate-directable chemical
reactions. Chem. Rev. 1993, 93, 1307–1370; (b) Schreiber, S. L. Targeted-
oriented and diversity-oriented organic synthesis in drug discovery. Science
2000, 287, 1964–1969; (c) Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A.
Stereochemical reversal of nucleophilic substitution reaction depending upon
substituent: reaction of heteroatom-substituted six-membered-ring oxocarbenium
ions through pseudoaxial conformers. J. Am. Chem. Soc. 2000, 122, 168–169;
(d) Chamberland, M. S.; Wipf, P.; Stephenson, C. R. J.; Walczak, M. A. A.
Diversity-oriented synthesis of azaspirocycles. Org. Lett. 2004, 6, 3009–3012.
4. (a) Zindel, J.; Meijere, A. A short and efficient diastereoselective synthesis of
0
¨
2 -substituted 2-cyclopropylglycines. Synthesis 1994, 190–194; (b) Bachvall, J.-E.;
Chinchilla, R.; Najera, C.; Yus, M. The use of sulfonyl 1,3-dienes in
´
organic synthesis. Chem. Rev. 1998, 98, 2291–2312; (c) Torres, E.; Chen, Y.;
Kim, I.-C.; Fuchs, P. L. Functionality propagation by alkylation oxidation of cross-
conjugated dienyl sulfones. Application to the synthesis of polypropionate stereo-
pentads. Angew. Chem. Int. Ed. 2003, 42, 3124–3131.
5. (a) Trost, B. M.; Schmuff, N. R.; Miller, M. J. Allyl sulfones as synthons for 1,1-
and 1,3-dipoles via organopalladium chemistry. J. Am. Chem. Soc. 1980, 102,
5979–5981; (b) Gais, H.-J.; van Gumpel, M.; Raabe, G.; Mu¨ller, J.; Braun, S.;
Lindner, H. J.; Rohs, S.; Runsink, J. Sulfonyl-stabilized allylic norbornenyl and
norbornyl carbanions: Structure and stereoselectivity of reaction with
electrophiles. Eur. J. Org. Chem. 1999, 1627–1651; (c) Li, X.; Lantrip, D.;
Fuchs, P. L. g-Allyl phosphinoyl phenyl sulfone (GAPPS): a conjunctive
reagent for synthesis of EE, EZ, and ET 1,3 -dienes. J. Am. Chem. Soc. 2003,
125, 14262–14263.
6. (a) Kao, L.-C.; Stakem, F. G.; Patel, B. A.; Heck, R. F. Palladium-catalyzed
reactions of vinylic bromides with allylic alcohol and amine derivatives. J. Org.
Chem. 1982, 47, 1267–1277; (b) Stille, J. K. The palladium-catalyzed cross-
coupling reactions of organotin reagents with organic electrophiles
[new synthetic methods (58)]. Angew. Chem. Int. Ed. 1986, 25, 508–524;
(c) Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of
organoboron compounds. Chem. Rev. 1995, 95, 2457–2483.
´
´
7. (a) Najera, C.; Perez-Pinar, A.; Sansano, J. M. A simple method for the synthesis of
g-functionalized vinyl and allyl sulfones. Tetrahedron 1991, 47, 6337–6352;
(b) Masuyama, Y.; Yamada, K.; Tanaka, H.; Kurusu, Y. Ring opening three-
carbon extension of 2-carboethoxycycloalkanones with 3-bromo-1-(p-tolylsulfo-
nyl)propene. Synth. Comm. 1987, 17, 1525–1531.
8. Trost, B. M.; Schmuff, N. R. Stereochemistry of allyl sulfones. On the structure of
metalated allyl sulfones and their stereochemistry of alkylation. J. Am. Chem. Soc.
1985, 107, 396–405.