LETTER
A Lewis Acid Mediated Stereoselective Removal of an Anomeric Urea Substituent
795
Bruché, L.; Zecchi, G. J. Chem. Soc., Perkin Trans. 1 1990,
533. (u) Nilsson, B. M.; Hacksell, U. J. Heterocycl. Chem.
1989, 26, 269. (v) Jones, B. C. N. M.; Silverton, J. V.;
Simons, C.; Megati, S.; Nishimura, H.; Maeda, Y.; Mitsuya,
H.; Zemlicka, J. J. Med. Chem. 1995, 38, 1397. (w) Rádl,
S.; Kovárová, L. Collect. Czech. Chem. Commun. 1991, 56,
2413. (x) For an account on living polymerization of
allenamides, see: Takagi, K.; Tomita, I.; Endo, T.
Macromolecules 1998, 31, 6741.
(4) For highly stereoselective [4+2] cycloaddition reactions of
chiral allenamides, see: (a) Wei, L.-L.; Hsung, R. P.; Xiong,
H.; Mulder, J. A.; Nkansah, N. T. Org. Lett. 1999, 1, 2145.
(b) Wei, L.-L.; Xiong, H.; Douglas, C. J.; Hsung, R. P.
Tetrahedron Lett. 1999, 40, 6903.
(5) For our other studies using chiral allenamides, see:
(a) Huang, J.; Xiong, H.; Hsung, R. P.; Rameshkumar, C.;
Mulder, J. A.; Grebe, T. P. Org. Lett. 2002, 4, 2417.
(b) Rameshkumar, C.; Xiong, H.; Tracey, M. R.; Berry, C.
R.; Yao, L. J.; Hsung, R. P. J. Org. Chem. 2002, 67, 1339.
(c) Xiong, H.; Hsung, R. P.; Berry, C. R.; Rameshkumar, C.
J. Am. Chem. Soc. 2001, 123, 7174. (d) Xiong, H.; Hsung,
R. P.; Wei, L.-L.; Berry, C. R.; Mulder, J. A.; Stockwell, B.
Org. Lett. 2000, 2, 2869.
Figure 1
(13) Hosomi, A.; Sakata, Y.; Sakurai, H. Carbohydr. Res. 1987,
171, 223.
(14) (a) Larsen, C. H.; Ridgeway, B. H.; Shaw, J. T.; Woerpel, K.
A. J. Am. Chem. Soc. 1999, 121, 12208. (b) Shaw, J. T.;
Woerpel, K. A. J. Org. Chem. 1997, 62, 6706. (c) Romero,
J. A. C.; Tabacco, S. A.; Woerpel, K. A. J. Am. Chem. Soc.
2000, 122, 168.
(6) For our synthesis of allenamides, see: (a) Wei, L.-L.;
Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas, C. J.;
Hsung, R. P. Tetrahedron 2001, 57, 459. (b) Xiong, H.;
Tracey, M. R.; Grebe, T. P.; Mulder, J. A.; Hsung, R. P. Org.
Synth. 2002, in press.
(15) Matsutani, H.; Ichikawa, S.; Yaruva, J.; Kusumoto, T.;
Hiyama, T. J. Am. Chem. Soc. 1997, 119, 4541.
(16) For selected experimental procedures and characterizations:
General Procedure for Lewis Acid Mediated Allylations
Using Pyran 8: To a solution of 317.7 mg of pyran 8 in 65
mL of freshly distilled CH2Cl2 at –78 °C under N2 were
added 503.9 mg of SnBr4 (1.5 equiv, 1.16 mmol) and 0.488
mL of allyltrimethylsilane (4 equiv, 3.06 mmol). The
reaction was vigorously stirred for 12 h and allowed to
slowly warm to r.t. The solvent was removed under reduced
pressure and purification using silica gel column
(7) For reviews, see: (a) Rappoport, Z. The Chemistry of
Enamines, In The Chemistry of Functional Groups; John
Wiley and Sons: New York, 1994. (b) Whitesell, J. K.;
Whitesell, M. A. Synthesis 1983, 517. (c) Hickmott, P. W.
Tetrahedron 1982, 38, 1975. (d) Hickmott, P. W.
Tetrahedron 1982, 38, 3363. (e) Lenz, G. R. Synthesis 1978,
489. (f) For cycloadditions using dienamides, see:
Campbell, A. L.; Lenz, G. R. Synthesis 1987, 421.
(8) For recent studies involving enamides, see: (a) Fuchs, J. R.;
Funk, R. L. Org. Lett. 2001, 3, 3349. (b) Maeng, J.-H.;
Funk, R. L. Org. Lett. 2000, 3, 1125. (c) Abbiati, G.;
Clerici, F.; Gelmi, M. L.; Gambini, A.; Pilati, T. J. Org.
Chem. 2001, 66, 6299. (d) Bach, T.; Schröder, J.; Brandl, T.;
Hecht, J.; Harms, K. Tetrahedron 1998, 54, 4507. (e) For
the only study of epoxidation of achiral enamides, see:
Adam, W.; Reinhardt, D.; Reissig, H.-U.; Paulini, K.
Tetrahedron 1995, 51, 12257; and references cited therein.
(f) See also: Koseki, Y.; Kusano, S.; Ichi, D.; Yoshida, K.;
Nagasaka, T. Tetrahedron 2000, 56, 8855.
(9) (a) Postema, M. H. D. Tetrahedron 1992, 48, 8545.
(b) Postema, M. H. D. C-Glycoside Synthesis; CRC Press:
Ann Arbor, 1995. (c) Levy, D. E.; Tang, C. The Chemistry
of C-Glycosides, 1st ed., Vol. 13; Pergamon Press: Oxford,
1995.
(10) Parker, K. A. Pure Appl. Chem. 1994, 66, 2135.
(11) For an example see: (a) Petó, C.; Batta, G.; Györgydeák, Z.;
Sztaricskai, F. J. Carbohydr. Chem. 1996, 15, 465. (b) For
some examples where removal of an electron deficient
anomeric nitrogen substituent led to unraveling of the
oxygen heterocycle: Robert, J. J.; Swaminathan, S.; John, M.
F.; Shalini, W.; Brain, F. C.; Mark, M. D. J. Am. Chem. Soc.
1993, 115, 9816. (c) Gilbert, S.; Chengzhi, Z.; Sergei, G.;
Ronald, S. Tetrahedron Lett. 1995, 36, 6387. (d) Katherine,
B.; Eric, T. J. Chem. Soc., Perkin Trans. 1 1998, 737.
(e) David, C.; Xe-Sheng, M. Tetrahedron Lett. 1997, 38,
8169.
chromatography afforded 157.6 mg of 9a and 9b as a
mixture in addition to recovery of the Close’s auxiliary in
70–90% recovery range when attempted. The ratio of 9a:9b
was found to be 4:1 from the crude 1H NMR. Preparative
thin layer chromatography (1% Et2O in hexanes) was useful
to separate the major isomer 9a from the minor isomer 9b.
9a (major). Rf = 0.30 (10% Et2O in hexanes). 1H NMR (500
MHz, CDCl3): d = 1.06 (d, J = 7.0 Hz, 3 H), 1.70 (m, 1 H),
1.78 (m, 1 H), 2.03 (m, 2 H), 2.18 (m, 1 H), 2.47 (ddd,
J = 1.0, 10.0, 18.0 Hz, 2 H) 3.43 (ddd, J = 6.0, 7.0, 7.0 Hz, 1
H), 4.96 (dd, J = 1.0, 10.0 Hz, 1 H), 5.04 (dd, J = 2.0, 15.0
Hz, 1 H), 5.52 (dd, J = 4.0, 8.0 Hz, 1 H), 5.74 (m, 1 H), 7.27–
8.31 (m, 7 H). 13C NMR (125 MHz, C6D5CD3): d = 137.9,
135.8, 134.2, 128.8, 128.5, 127.8, 125.4, 125.2, 125.1,
124.8, 124.2, 115.6, 76.8, 69.6, 36.8, 32.2, 27.4, 27.3, 17.8.
IR (thin film): 3052 (m), 2932 (m), 1641 (m) cm–1. MS (EI):
m/e (% relative intensity) = 266.2 (25) [M+], 249.6 (100).
Optical rotation was not pursued because samples of 9a still
contained some 9b.
9b (minor). Rf = 0.30 (10% Et2O in hexanes). 1H NMR (500
MHz, CDCl3): d = 1.06 (d, J = 7.0 Hz, 3 H), 1.55 (m, 3 H),
1.74 (m, 1 H), 2.03 (m, 2 H), 2.65 (m, 1 H), 4.01 (dd, J = 4.0,
10.0 Hz, 1 H), 4.97 (d, J = 10.0 Hz, 1 H), 5.11 (d, J = 17.0
Hz, 1 H), 5.33 (dd, J = 1.0, 10.0 Hz, 1 H), 5.88 (m, 1 H),
7.07–8.25 (m, 7 H). 13C NMR (125 MHz, C6D5CD3): d =
136.0, 128.9, 128.8, 127.8, 127.5, 125.4, 123.8, 123.6,
115.7, 76.8, 68.1, 33.3, 32.6, 30.5, 27.6, 16.7 (3 signals are
missing overlap with solvent). IR (thin film): 3064 (m), 2945
(m), 1635 (m)cm–1. MS (EI): m/e (% relative intensity) =
284.2(50) [M + NH4]+, 264.1(10), 247.1(100); m/e
calculated for C19H26NO: 284.2015. Found: 284.2015.
General Procedure for Lewis Acid Mediated Allylations
Using Pyran 20: To a solution of pyran 20 (5.0 mg, 0.011
(12) The X-ray structure of pyran 8 is available in supplementary
materials (Figure 1).
Synlett 2003, No. 6, 791–796 ISSN 1234-567-89 © Thieme Stuttgart · New York