Stereospecific Synthesis of 1,3-Oxazinane-2,4-diones
A R T I C L E S
Scheme 2. Synthetic Uses of 1,3-Oxazinane-2,4-diones
Scheme 3. Precursors for the Synthesis of
1,3-Oxazinane-2,4-diones
ring closure, and regenerates the catalytic species. Leveraging
insight gained from our mechanistic studies, we reasoned that
prolonging the lifetime of intermediate A would enable its
intermolecular reaction with electrophiles such as isocyanates
(3).4 Reaction of the aluminum alkoxide of A with an isocyanate
(Scheme 1, path II), followed by ring closing, would yield a
1,3-oxazinane-2,4-dione (OD, 4). The net result would therefore
be a new, catalytic, multicomponent reaction (MCR) that forms
an OD.
ODs have found use as versatile synthetic intermediates
because they can be transformed, in stereospecific fashion, to a
variety of functional groups (Scheme 2). They have been used
in the synthesis of trisubstituted (E)-R,â-unsaturated amides
(Scheme 2, path a),5 which have in turn been elaborated to (E)-
R,â-unsaturated acids5a and to C-nucleoside precursors.5c Ka-
mino et al. have formed â-ketoesters from ODs (Scheme 2, path
b).6 In their total synthesis of the antibiotic neooxazolomycin,
Kende et al. used an OD to form a key â-hydroxy-acid
intermediate (Scheme 2, path c) that was difficult to produce
in enantiopure form by other methods.7 Finally, a functionalized
OD has been used in the enantioselective synthesis of a linear
polyol (Scheme 2, path d, R1 ) -CHdCHCH3, R2 ) -OBn).6
A number of synthetic methods for producing ODs have been
described, and these are summarized in Scheme 3. Several routes
are available for the conversion of â-hydroxy acids to ODs
(Scheme 3, path a). In general, these involve either (i) reaction
with an isocyanate or cyanate, and subsequent condensation,5c,8
or (ii) derivatization to a â-hydroxy amide, followed by reaction
with a carbonyl equivalent such as carbonyl diimidazole or
diphosgene.9 Though high-yielding in some cases, these syn-
theses require at least two steps and necessarily generate
byproducts. The latter is also true of OD syntheses in which a
â-hydroxy10 or â-metalloxy11 ester is condensed with an
isocyanate (Scheme 3, path b).12 Recently, OD synthesis has
been reported via the base-mediated (and, in some cases, metal-
catalyzed) rearrangement of â-hydroxy N-acyloxazolidin-2-ones,
which are the aldol products of N-acyloxazolidin-2-ones (Scheme
3, path c),5a,b,6,7,13 and by similar rearrangements.14 These
reactions, first reported in 1989,7b are stereoselective and with
careful choice of catalyst can produce highly stereopure ODs.
Barton and Liu have also reported an unrelated rearrangement
route to OD (Scheme 3, path d).15
In the particular case of benzo-fused ODs (Scheme 3,
-CHR1CHR2- ) -o-C6H4-), an excellent route from iodophenols
is available (Scheme 3, path e).16,17 Larksarp and Alper used a
palladium-coupling strategy to construct a series of benzox-
azinediones from 2-iodophenols, isocyanates, and CO.16 Though
this synthesis is restricted to benzoxazinedione formation, and
does produce a coupling byproduct, it proceeds in good yields
(9) (a) Kurz, T. Tetrahedron 2005, 61, 3091-3096. (b) Kolasa, T.; Miller, M.
J. Tetrahedron 1989, 45, 3071-3080. (c) Pintye, J.; Fu¨lo¨p, F.; Berna´th,
G.; Soha´r, P. Monatsch. Chem. 1985, 116, 857-868. (d) Shapiro, S. L.;
Rose, I. M.; Freedman, L. J. Am. Chem. Soc. 1957, 79, 2811-2814.
(10) (a) Boontheung, P.; Perlmutter, P. Tetrahedron Lett. 1998, 39, 2629-2630.
(b) Ohshiro, Y.; Ando, N.; Komatsu, M.; Agawa, T. Synthesis 1985, 276-
279.
(11) (a) Lapkin, I. I.; Semenov, V. I.; Saitkulova, G. F. Russ. J. Org. Chem.
1982, 18, 2189. (b) Saitkulova, F. G.; Semenov, V. I.; Lapkin, I. I. Khim.
Elementoorg. Soedin. 1982, 22-26.
(4) In related chemistry, the reaction of CO2, which is isoelectronic with
isocyanates, into Al-O bonds has been studied; see, for example: (a)
Chisholm, M. H.; Zhou, Z. J. Am. Chem. Soc. 2004, 126, 11030-11039.
(b) Aida, T.; Inoue, S. J. Am. Chem. Soc. 1983, 105, 1304-1309.
(5) (a) Feuillet, F. J. P.; Cheeseman, M.; Mahon, M. F.; Bull, S. D. Org. Biomol.
Chem. 2005, 3, 2976-2989. (b) Feuillet, F. J. P.; Robinson, D. E. J. E.;
Bull, S. D. Chem. Commun. 2003, 2184-2185. (c) Katagiri, N.; Hirose,
M.; Sato, M.; Kaneko, C. Chem. Pharm. Bull. 1989, 37, 933-938.
(6) Kamino, T.; Murata, Y.; Kawai, N.; Hosokawa, S.; Kobayashi, S.
Tetrahedron Lett. 2001, 42, 5249-5252.
(12) The electrochemically initiated condensation of a â-bromo amide with CO2
has been reported to form OD; however, a large amount of R,â-unsaturated
amide was also generated, possibly from decomposition of OD under the
reaction conditions; see: Casadei, M. A.; Cesa, S.; Moracci, F. M.; Inesi,
A.; Feroci, M. J. Org. Chem. 1996, 61, 380-383.
(13) (a) Feuillet, F. J. P.; Niyadurupola, D. G.; Green, R.; Cheeseman, M.; Bull,
S. D. Synlett 2005, 1090-1094. (b) Ito, Y.; Terashima, S. Tetrahedron
1991, 47, 2821-2834.
(14) (a) Yang, K.-S.; Chen, K. Org. Lett. 2002, 4, 1107-1109. (b) Abbas, T.
R.; Cadogan, J. I. G.; Doyle, A. A.; Gosney, I.; Hodgson, P. K. G.; Howells,
G. E.; Hulme, A. N.; Parsons, S.; Sadler, I. H. Tetrahedron Lett. 1997, 38,
4917-4920. (c) Narasaka, K.; Yamamoto, I. Tetrahedron 1992, 48, 5743-
5754.
(7) (a) Kende, A. S.; Kawamura, K.; DeVita, R. J. J. Am. Chem. Soc. 1990,
112, 4070-4072. (b) Kende, A. S.; Kawamura, K.; Orwat, M. J.
Tetrahedron Lett. 1989, 30, 5821-5824.
(8) (a) Shibuya, I.; Goto, M.; Shimizu, M.; Yanagisawa, M.; Gama, Y.
Heterocycles 1999, 51, 2667-2673. (b) Paik, S.; Carmeli, S.; Cullingham,
J.; Moore, R. E.; Patterson, G. M. L.; Tius, M. A. J. Am. Chem. Soc. 1994,
116, 8116-8125. (c) Vorbru¨ggen, H. Tetrahedron Lett. 1968, 9, 1631-
1634. (d) Testa, E.; Fontanella, L.; Cristiani, G.; Gallo, G. J. Org. Chem.
1959, 24, 1928-1936.
(15) Barton, D. H. R.; Liu, W. Chem. Commun. 1997, 571-572.
(16) Larksarp, C.; Alper, H. J. Org. Chem. 1999, 64, 9194-9200.
(17) The reaction of phenols with N-(chlorocarbonyl)isocyanate, followed by
intramolecular Friedel-Crafts reaction, has also been shown to form
benzoxazinediones; see: Hagemann, H. Angew. Chem., Int. Ed. Engl. 1977,
16, 743-750.
9
J. AM. CHEM. SOC. VOL. 129, NO. 26, 2007 8157