Communications
d = 7.07 (s, 1H, Ph), 6.01 (s, 2H, NH2), 2.91 (s, 3H, NMe), 2.35 (s, 3H,
Me), 2.13 ppm (s, 3H, Me); 13C{1H} d = 169.6 and 169.5 (2CO), 143.2,
130.2, 125.8, 124.3, and 109.2 (5C of Ph), 137.7 (CH of Ph), 23.0, 17.0,
and 15.9 ppm (3Me).
aromatization of three-component-coupling products, which
is based on a newtransfer hydrogenation reaction, is the key
step of the described method. The sequential combination of
a three-component-coupling reaction and a domino depro-
tection/aromatization reaction leads to the straightforward
synthesis of polysubstituted anilines with diverse substitution
patterns.[24] The overall procedure utilizes simple, readily
available starting materials and is unique in that it allows the
(regio)selective introduction of substituents in one ortho, one
meta, and para position, as well as electron-deficient sub-
stituents in the other ortho and meta positions. To the best of
our knowledge, this type of tri-, tetra-, and pentasubstituted
anilines cannot be accessed by any other methods with similar
efficiency.
Received: March 25, 2003 [Z51484]
Keywords: anilines · multicomponent reactions · palladium ·
.
transfer hydrogenation
[1] a) K. Weissermel, H. J. Arpe, Industrial Organic Chemistry,
Wiley-VCH, Weinheim, 1997, pp. 374 – 377; b) R. J. Lindsay in
Comprehensive Organic Chemistry (Ed.: I. O. Sutherland),
Pergamon, Oxford, 1979, part 6.3; c) T. Sugasawa, T. Toyoda,
M. Adachi, K. Sasakura, J. Am. Chem. Soc. 1978, 100, 4842 –
4852; d) M. Adachi, T. Sugasawa, Synth. Commun. 1990, 20, 71 –
84; e) G. S. Zenchoff, A. Walser, R. I. Fryer, J. Heterocycl. Chem.
1976, 13, 33 – 39.
Experimental Section
General procedure for the preparation of 1: A mixture of O-benzyl
carbamate (15 mmol), p-toluenesulfonic acid·H2O (2 mol%), alde-
hyde (15 mmol), Ac2O (15 mmol), maleimide (11 mmol), and N-
methylpyrrolidone (10 mL) was sealed in an ACE pressure tube and
stirred at 1208C. After 24 h the solvent and other volatile compounds
were removed by high-vacuum distillation. Silica gel flash chroma-
tography (heptane/ethyl acetate) of the residue afforded the three-
component-reaction adducts as air-stable solids.
[2] a) W. Flitsch, Chem. Ber. 1961, 94, 2494 – 2501; b) R. Dabard, J.
Tirouflet, Bull. Soc. Chim. Fr. 1957, 565 – 570; c) C. H. Wang,
T. C. Feng, B. E. Christensen, J. Am. Chem. Soc. 1950, 72, 4887 –
4890.
[3] J. March, Advanced Organic Chemistry, Wiley, NewYork, 1992,
pp. 668 – 669.
[4] a) B. H. Yang, S. L. Buchwald, J. Organomet. Chem. 1999, 576,
125 – 146; b) J. F. Hartwig, Angew. Chem. 1998, 110, 2154 – 2177;
Angew. Chem. Int. Ed. 1998, 37, 2047 – 2067; c) J. P. Wolfe, S.
Wagaw, J.-F. Marcoux, S. L. Buchwald,Acc. Chem. Res. 1998, 31,
805 – 818; d) J. F. Hartwig, Synlett 1997, 5, 329 – 340; e) M. Beller,
Angew. Chem. 1995, 107, 1436 – 1437; Angew. Chem. Int. Ed.
Engl. 1995, 34, 1316 – 1317.
[5] a) F. Y. Kwong, S. L. Buchwald, Org. Lett. 2003, 5, 793 – 796;
b) F. Y. Kwong, A. Klapars, S. L. Buchwald, Org. Lett. 2002, 4,
581 – 584; c) A. A. Kelkar, N. M. Patil, R. V. Chaudhari, Tetra-
hedron Lett. 2002, 43, 7143 – 7146.
[6] a) M. Beller, C. Breindl, M. Eichberger, C. G. Hartung, J.
Seayad, O. R. Thiel, A. Tillack, H. Trauthwein, Synlett 2002, 10,
1579 – 1594; b) A. Tillack, I. G. Castro, C. G. Hartung, M. Beller,
Angew. Chem. 2002, 114, 2646 – 2648; Angew. Chem. Int. Ed.
2002, 41, 2541 – 2543; c) C. G. Hartung, A. Tillack, H. Trauth-
wein, M. Beller, J. Org. Chem. 2001, 66, 6339 – 6343; d) M.
Beller, C. Breindl, T. H. Riermeier, A. Tillack, J. Org. Chem.
2001, 66, 1403 – 1412.
With a,b-unsaturated aldehydes, reactions were run in the
presence of 7.5 mmol aldehyde and without Ac2O. Reactions with
acrylonitrile used a fourfold excess of the dienophile and required 4 d
for completion.
General procedure for the synthesis of 2: A 100-mL flask was
charged with a mixture of carbamate 1 (2.9 mmol), Pd/C (10% Pd on
C, 8 mol%), and triglyme (20 mL), equipped with a reflux condenser,
and heated to 1408C. After 6–64 h the solution was filtered through a
Celite pad, and solvent and other volatile compounds were removed
by high-vacuum distillation. The residue was subjected to silica gel
flash chromatography (heptane/ethyl acetate).
1a: According to the general procedure for 1, O-benzyl
carbamate (2.27 g, 15 mmol), propionaldehyde (0.87 g, 15 mmol),
acetic anhydride (1.4 mL, 15 mmol), and N-methylmaleimide (1.28 g,
11.25 mmol) were employed. SiO2 chromatography (hept/EtOAc
3:1): Rf = 0.15. 79% yield of isolated product (white solid). M.p. 62–
~
668C. IR (KBr): n = 3395 brvs, 3064 w, 3033 w, 2937 m, 1769 m, 1705
brvs, 1514 vs, 1437 s, 1384 s, 1336 s, 1287 s, 1232 s, 1045 s, 912 w, 836 m,
781 m, 749 m, 699 s, 662 w, 594 m, 531 cmÀ1; MS (EI): 342 ([M]+, 1%),
251 ([MÀBn]+, 5%), 233 ([MÀBnO]+, 4%), 207 (93%), 122 (23%),
107 ([BnO]+, 17%), 91 ([Bn]+, 100%, no other peaks of > 5%;
HRMS: calcd for C19H22N2O4: 342.15796; found: 342.15788; NMR
([D6]DMSO): 1H d = 7.44–7.34 (m, 5H, Ph), 6.96 (d, 9.3 Hz, 1H, NH),
[7] a) A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross, M.
Beller, Science 2002, 297, 1676 – 1678; b) T. Gross, A. M. Seayad,
M. Ahmed, M. Beller, Org. Lett. 2002, 4, 2055 – 2058.
[8] For a reviewon amidocarbonylations, see: M. Beller, M. Eckert,
Angew. Chem. 2000, 112, 1026 – 1044; Angew. Chem. Int. Ed.
2000, 39, 1010 – 1027.
[9] a) I. Ugi, Pure Appl. Chem. 2001, 73, 187 – 191; b) H. Bienaymꢀ,
C. Hulme, G. Oddon, R. Schmitt, Chem. Eur. J. 2000, 6, 3321 –
3329; c) A. Dꢁmling, I. Ugi, Angew. Chem. 2000, 112, 3300 –
3344; Angew. Chem. Int. Ed. 2000, 39, 3169 – 3210; d) L. F.
Tietze, Chem. Rev. 1996, 96, 115 – 136; e) G. H. Posner, Chem.
Rev. 1986, 86, 831 – 844.
[10] a) H. Neumann, A. Jacobi von Wangelin, D. Gꢁrdes, A.
Spannenberg, M. Beller, J. Am. Chem. Soc. 2001, 123, 8398 –
8399; b) A. Jacobi von Wangelin, H. Neumann, D. Gꢁrdes, A.
Spannenberg, M. Beller, Org. Lett. 2001, 3, 2895 – 2898; c) H.
Neumann, A. Jacobi von Wangelin, D. Gꢁrdes, A. Spannenberg,
W. Baumann, M. Beller, Tetrahedron 2002, 58, 2381 – 2387; d) A.
Jacobi von Wangelin, H. Neumann, D. Gꢁrdes, S. Klaus, H. Jiao,
A. Spannenberg, M. Beller, T. Krꢂger, C. Wendler, K. Thurow,
N. Stoll, Chem. Eur. J. 2003, 9, 2273 – 2281 .
=
5.36 (s, 1H, C ), 5.15 (s, 2H, CH2), 4.36 (m, 1H, NHCH), 3.33 (dd,
6.2/8.4 Hz, 1H, NHCHCH), 3.11 (t*, 7.7 Hz, 1H, CH3CHCHCO),
=
2.78 (s, 3H, NMe), 2.49–2.43 (m, 1H, MeCH), 1.62 (s, 3H, MeC ),
1.28 ppm (d, 7.4 Hz, 3H, MeCH); 13C{1H} d = 178.9 and 177.1 (2 CO);
=
=
155.6 (CO2), 137.3 (MeC ), 136.9, 128.4, 127.9, 127.7, and 127.1 (CH
and Ph), 65.8 (CH2O), 49.7 (NHCH), 44.1 and 43.9 (NHCHCHCH),
=
29.6 (MeCH), 24.3 (NMe), 18.0 and 16.8 ppm (MeC and MeCH).
2a: According to the general procedure for 2, carbamate 1a
(1.0 g, 2.9 mmol) and Pd/C (0.25 g, 10% Pd on C) were employed.
SiO2 chromatography (hept/EtOAc 3:1): Rf = 0.15. 91% yield of
~
isolated product (yellowish solid). M.p. 185–1878C. IR (KBr): n =
3475, 3370 vs, 3200, 2924 w, 1740 s, 1690 s, 1642 s, 1614 m, 1596 m, 1492
s, 1441 s, 1382 m, 1370 m, 1313 w, 1268 s, 1235 m, 1159 w, 1125 w, 1024 s,
996 s, 761 s, 615 m, 560 cmÀ1; MS (EI): 204 ([M]+, 100%), 189
([MÀNH]+,
18%),
147
([MÀCOÀNMe]+,
19%),
119
([MÀ2COÀNMe]+, 42%), no other peaks of > 5%. HRMS: calcd
[11] a) J. M. Janey, T. Iwama, S. A. Kozmin, V. H. Rawal, J. Org.
Chem. 2000, 65, 9059 – 9068; b) M. B. Smith, Org. Prep. Proced.
for C11H12N2O2: 204.08890; found: 204.08987; NMR ([D6]DMSO): 1H
4506
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 4503 –4507