References
1 (a) D. S. Richeson, J. F. Mitchell and K. H. Theopold,
Organometallics, 1989, 8, 2570–2577; (b) K. H. Theopold,
W.-K. Kim, J. M. Power, J. M. Mora and A. P. Masino, Int. Pat.
Appl., WO 01/12637, 2001; (c) V. C. Gibson, C. Newton,
C. Redshaw, G. A. Solan, A. J. P. White and D. J. Williams,
Eur. J. Inorg. Chem., 2001, 1895–1903; (d ) V. C. Gibson, C. Newton,
C. Redshaw, G. Solan, A. J. P. White, P. J. Maddox and D. J.
Williams, Chem. Commun., 1998, 1651–1652.
2 (a) W.-K. Kim, M. J. Fevola, L. M. Liable-Sands, A. L. Rheingold
and K. H. Theopold, Organometallics, 1998, 17, 4541–4543; (b)
P. H. M. Budzelaar, A. B. V. Oort and A. G. Orpen, Eur. J. Inorg.
Chem., 1998, 1485–1494.
3 L. Kakaliou, W. J. Scanlon, B. Qian, S. W. Baek, M. R. Smith and
D. H. Motry, Inorg. Chem., 1999, 38, 5964–5977.
4 G. B. Nikiforov, H. W. Roesky, J. Magull, M. Noltemeyer, H.-G.
Schmidt, E. G. Ilyin, Y. B. Kokunov and A. Demsar, Eur. J. Inorg.
Chem., 2003, 437–441.
5 D. D. Perrin and W. L. F. Armarego, Purification of Laboratory
Chemicals, Pergamon, London, 3rd edn., 1988.
6 D. Neculai, H. W. Roesky, A. M. Neculai, J. Magull, H.-G. Schmidt
and M. Noltemeyer, J. Organomet. Chem., 2002, 643, 47–52.
7 T. Kottke and D. Stalke, J. Appl. Crystallogr., 1993, 26, 615–619.
8 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467–473.
9 G. M. Sheldrick, SHELXL-97, Program for the Refinement of
Crystal Structures; University of Göttingen, Germany, 1997.
10 J. S. Overby, K. C. Jayaratne, N. J. Schoell and T. P. Hanusa,
Organometallics, 1999, 18, 1663–1668.
11 A. M. Neculai, H. W. Roesky, D. Neculai and J. Magull,
Organometallics, 2001, 20, 5501–5503.
12 P. Ghosh, H. Taube, T. Hasegawa and R. Kuroda, Inorg. Chem.,
1995, 34, 5761–5775.
13 D. G. L. Holt, L. F. Larkworthy, D. C. Povey, G. W. Smith and
G. J. Leigh, J. Chem. Soc., Dalton Trans., 1990, 3229–3233.
14 (a) G. Aharonian, K. Feghali, S. Gambarotta and G. P. A. Yap,
Organometallics, 2001, 20, 2616–2622; (b) E. A. C. Brussee,
A. Meetsma, B. Hessen and J. H. Teuben, Organometallics, 1998, 17,
4090–4095.
15 F. Preuss, M. Steidel, M. Vogel, G. Overhoff, G. Hornung, W. Towae,
W. Frank, G. Reiss and S. Müller-Becker, Z. Anorg. Allg. Chem.,
1997, 623, 1220–1228.
Fig. 2 Molecular structure of one LVP(C6H5)2 molecule showing 50%
probability ellipsoids (the hydrogen atoms are omitted for clarity).
(2.5752(9) and 2.5600(9) Å). These V–P distances are notably
longer than those reported for a diphosphene vanadium()
complex, trans-[{V(η5-C5H5)(CO)3}2(PMes)2]21 (2.397(1) Å)
or a phospinidene vanadium complex, [V2(CO)4(η5-C5H5)2-
{µ-P(2,4,6-(tBu)3C3H2)}]22 (2.268(1) and 2.243(1) Å).
Intriguingly, they are also longer than the V–P distances
found in some complexes that contain coordinated phosphine,
such as V(N-2,6-iPr2C6H3)Cl3(depe) (2.520(2) Å) (depe =
Et2PCH2CH2PEt2).23 This can be attributed to the larger
radius of vanadium() compared to vanadium(), and to a
greater extent of the ionic character of the V–P bond in
LVP(C6H5)2.
16 F. Preuss and F. Tabellion, Z. Naturforsch., Teil B, 2000, 55,
735–737.
17 R. T. Baker, P. J. Krusic, T. H. Tulip, J. C. Calabrese and S. S.
Wreford, J. Am. Chem. Soc., 1983, 105, 6763–6765.
18 G. W. Rabe, G. P. A. Yap and A. L. Rheingold, Inorg. Chem., 1995,
34, 4521–4522.
Conclusions
In this study it has been shown that the ligand L functions as an
ancillary system for vanadium, thereby providing an easy access
to a novel class of β-diketiminato vanadium complexes. Not
only does the β-diketiminato ligand L provide a suitable
coordination environment for vanadium() or vanadium()
cations but its built-in amine donor allows the isolation of
base- and salt-free complexes. While the substitution reaction
of LVCl2 with AgOSO2CF3 follows a well established pattern,
the reaction of LVCl2 with KPPh2 is interesting due to its
product formation, which constitutes the first structurally
characterized terminal vanadium phosphido complex that
features a remarkably long V–P bond length.
19 (a) C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White,
J. Chem. Soc., Dalton Trans., 1999, 2451–2460; (b) F. A. Cotton,
E. V. Dikarev and M. A. Petrukhina, Inorg. Chem., 1998, 37,
6035–6043; (c) G. Boni, P. Sauvageot, E. Marpeaux and C. Moise,
Organometallics, 1995, 14, 5652–5656; (d ) L. R. Falvello, J. Fornies,
C. Fortuno, F. Duran and A. Martin, Organometallics, 2002, 21,
2226–2234.
20 (a) R. Melenkivitz, D. J. Mindiola and G. L. Hillhouse, J. Am.
Chem. Soc., 2002, 124, 3846–3847; (b) M. A. Zhuravel,
D. S. Zakharov, N. Lev and A. L. Rheingold, Organometallics, 2002,
21, 3208–3214; (c) D. K. Wicht, I. Kovacik, D. S. Glueck,
L. M. Liable-Sands, C. D. Incarvito and A. L. Rheingold,
Organometallics, 1999, 18, 5141–5151.
21 R. A. Bartlett, H. V. R. Dias and P. P. Power, J. Organomet. Chem.,
1989, 362, 87–94.
22 A. M. Arif, A. H. Cowley, N. C. Norman, A. G. Orpen and
M. Pakulski, Organometallics, 1988, 7, 309–318.
23 F. Montilla, A. Monge, E. Gutiérrez-Puebla, A. Pastor, D. del Rio,
N. C. Hernandez, Y. F. Sanz and A. Galindo, Inorg. Chem., 1999, 38,
4462–4466.
Acknowledgements
Dedicated to Professor Friedrich Hensel on the occasion of his
70th birthday. We are thankful to the Deutsche Forschungs-
gemeinschaft for financial support.
D a l t o n T r a n s . , 2 0 0 3 , 2 8 3 1 – 2 8 3 4
2834