Kanaya et al.
JOCArticle
stimuli,12-16 but photostimuli have been widely exploited to
modulate the conformation of supramolecular assemblies
with photochromic chromophores. Photochromic chromo-
phores can be classified into two types: thermally reversible
and photochemically reversible.17 We have focused on stil-
benederivatives as photochemically reversiblechromophores.
Some stilbene derivatives represent thermally irreversible
photochromic compounds, meaning that the geometry of the
stilbene derivative depends on the wavelength. Previously,
Janus [2]rotaxanes containing CD as a rotor have been
reported independently by Kaneda,18 Easton,19 and our
group.20 A photoresponsive Janus [2]rotaxane has been re-
ported by Easton and co-workers.19 They utilized a stilbene
moiety as a photoresponsive moiety and demonstrated photo-
responsive switching of the location of the R-CD moiety. We
have reported the preparation of a double-threaded dimer and
supramolecular oligomers with cinnamoyl-R-cyclodextrins
(2-CiO-R-CD and 3-CiO-R-CD).21 However, these supramo-
lecular complexes cannot change the structures by external
stimuli. Although the stilbene amide R-CD (3-Sti-R-CDs)
achieved the formation of a double-threaded dimer and that
of nonthreaded supramolecular self-assembly by photoirra-
diation with an increase in the concentration,22 it is still
difficult to establish the controlling formation of a double-
threaded dimer and supramolecular oligomers. The structure
of the supramolecular polymers formed by the stilbene bis(β-
CD) dimer with the adamantyl dimer is controlled by an
external stimulus. The conformation of the stilbene bis(β-CD)
dimer in aqueous solution is photochemically controlled.
When the stilbene bis(β-CD) is in trans conformation, a
supramolecular dimer is formed in aqueous solution, whereas
in its cis conformation of the stilbene bis(β-CD) dimer,
supramolecular linear polymers were observed.23
Herein, we investigate the reversible structural control of
supramolecular complexes with cyclodextrin-stilbene deri-
vatives by photoirradiation because the association constant
of R-CD for trans-stilbene is larger than that for cis-stilbene
(trans-stilbene, Ka=1260 M-1; cis-stilbene, Ka=360 M-1).24
The stilbene (StiO) group was introduced into the secondary
hydroxyl group of R-CD through an ester bond as a flexible
linker (StiO-R-CDs). Unexpectedly, the StiO group on
2-StiO-R-CDs migrated between adjacent hydroxyl groups to
give 3-StiO-R-CDs under neutral conditions. This paper
reports the migration and formation of supramolecular com-
plexes with the isomers of StiO-R-CDs (2-trans-StiO-R-CD,
3-trans-StiO-R-CD, 2-cis-StiO-R-CD, and 3-cis-StiO-R-CD).
(3) Liu, C. Foundations of MEMS; Pearson Education: Upper Saddle
River, NJ, 2006.
(4) Huang, T. J.; Brough, B.; Ho, C.-M.; Liu, Y.; Flood, A, H.; Bonvallet,
P.; Tseng, H.-R.; Baller, M.; Magonov, S.; Stoddart, J. F. Appl. Phys. Lett.
2004, 85, 5391–5393.
(5) (a) Yu, H. H.; Pullen, A. E.; Xu, B.; Swager, T. M. Polym. Mater. Sci.
Eng. 2000, 83, 523–524. (b) Anquetil, P. A.; Yu, H. H.; Madden, J. D.;
Madden, P. G.; Swager, T. M.; Hunter, I. W. Proc. SPIE Int. Soc. Opt. Eng.
2002, 4695, 424–434. (c) Anquetil, P. A.; Yu, H. H.; Madden, J. D.; Swager,
T. M.; Hunter, I. W. Proc. SPIE Int. Soc. Opt. Eng. 2003, 5051, 42–53. (d) Yu,
H. H.; Swager, T. M. IEEE J. Oceanic Eng. 2004, 29, 692–695.
ꢀ
(6) (a) Jimenez-Molero, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P.
Chem. Commun. 2003, 1613–1616. (b) Collin, J.-P.; Dietrich-Buchecker, C.;
~
Gavina, P.; Jimenez-Molero, M. C.; Sauvage, J.-P. Acc. Chem. Res. 2001, 34,
477–487. (c) Blanco, M.-J.; Jimenez-Molero, M. C.; Chambron, J.-C.; Heitz,
ꢀ
ꢀ
ꢀ
V.; Linke, M.; Sauvage, J.-P. Chem. Soc. Rev. 1999, 28, 293–305. (d) Jimenez,
M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P.; De Cian, A. Angew. Chem.,
ꢀ
Int. Ed. 2000, 39, 1295–1298. (e) Jimenez-Molero, M. C.; Dietrich-Bucheck-
er, C.; Sauvage, J.-P. A. Angew. Chem., Int. Ed. 2000, 39, 3284–3287. (f)
ꢀ
Jimenez-Molero, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Chem.;Eur.
J. 2002, 8, 1456–1466. (g) Dietrich-Buchecker, C.; Jimenez-Molero, M. C.;
ꢀ
Sartor, V.; Sauvage, J.-P. Pure Appl. Chem. 2003, 75, 1383–1393.
(7) (a) Juluri, B. K.; Kumar, A. S.; Liu, Y.; Ye, T.; Yang, Y. W.; Flood,
A. H.; Fang, L.; Stoddart, J. F.; Weiss, P. S.; Huang, T. J. ACS Nano 2009, 3,
291. (b) Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop,
B. H.; Tseng, H. R.; Jeppesen, J. O.; Huang, T. J.; Brough, B.; Baller, M.;
Magonov, S.; Solares, S. D.; Goddard, W. A.; Ho, C. M.; Stoddart, J. F.
J. Am. Chem. Soc. 2005, 127, 9745.
(8) (a) Nguyen, T. D.; Tseng, H.-R.; Celestre, P. C.; Flood, A. H.; Liu, Y.;
Stoddart, J. F.; Zink, J. I. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10029–
10034. (b) Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C.-F.; Stoddart, J. F.;
Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626–634. (c) Saha, S.; Leung, K. C.-F.;
Nguyen, T. D.; Stoddart, J. F.; Zink, J. I. Adv. Funct. Mater. 2007, 17, 685–693.
(d) Angelos, S.; Johansson, E.; Stoddart, J. F.; Zink, J. I. Adv. Funct. Mater.
2007, 17, 2261–2271. (e) Angelos, S.; Yang, Y.-W.; Patel, K.; Stoddart, J. F.;
Zink, J. I. Angew. Chem., Int. Ed. 2008, 47, 2222–2226. (f) Patel, K.; Angelos, S.;
Dichtel, W. R.; Coskun, A.; Yang, Y.-W.; Zink, J. I.; Stoddart, J. F. J. Am.
Chem. Soc. 2008, 130, 2382–2383.
(9) (a) Raehm, L.; Sauvage, J.-P. In Molecular Machines and Motors;
Sauvage, J. -P., Ed.; Springer: Berlin, Germany, 2001; pp 55-78. (b) Liu, J.;
ꢀ
Gomez-Kaifer, M.; Kaifer, A. E. In Molecular Machines and Motors;
Sauvage, J.-P., Ed.; Springer: Berlin, 2001; pp 142 -162. (c) Shipwey,
A. N.; Katz, E.; Willner, I. In Molecular Machines and Motors; Sauvage,
J.-P., Ed.; Springer: Berlin, 2001; pp 238 -281. (d) Raymo, F. M.; Stoddart,
J. F. Molecular Switches; Feringa, B. L., Ed.; Willey, VCH: Weinheim,
Germany, 2001, Sec. 7, “Switchable Catenanes and Molecular Shuttles”.
(10) (a) Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F. Nature
´ ´
1994, 369, 133–137. (b) Martınez-Dıaz, M.-V.; Spencer, N.; Stoddart, J. F.
Angew. Chem., Int. Ed. Engl. 1997, 36, 1904–1907. (c) Ashton, P. R;
Ballardini, R.; Balzani, V.; Baxter, I.; Credi, A.; Fyfe, M. C. T.; Gandolfi,
ꢀ
M. T.; Gomez-Lopez, M.; Martı
Stoddart, J. F.; Venturi, M.; White, A. J. P.; Williams, D. J. J. Am. Chem.
Soc. 1998, 120, 11932–11942. (d) Blanco, M.-J.; Jimenez, M. C.; Chambron,
J.-C.; Heitz, V.; Linke, M.; Sauvage, J.-P. Chem. Soc. Rev. 1999, 28, 293–305.
(e) Hiratani, K.; Kaneyama, M.; Nagawa, Y.; Koyama, E.; Kanesato, M.
J. Am. Chem. Soc. 2004, 126, 13568–13569. (f) Badjic, J. D.; Balzani, V.; Credi,
A.; Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845–1849. (g)Cheng, K.-W.;Lai,
C.-C.; Chiang, P.-T.; Chiu, S.-H. Chem. Commun. 2006, 2854–2856.
ꢀ
nez-Dıaz, M.-V.; Piersanti, A.; Spencer, N.;
´ ´
ꢀ
~
(11) (a) Gavina, P.; Sauvage, J.-P. Tetrahedron Lett. 1997, 38, 3521–3524.
(b) Armaroli, N.; Balzani, V.; Collin, J.-P.; Gavina, P.; Sauvage, J.-P.;
Ventura, B. J. Am. Chem. Soc. 1999, 121, 4397–4408. (c) Jeppesen, J. O.;
Perkins, J.; Becher, J.; Stoddart, J. F. Angew. Chem., Int. Ed. 2001, 40, 1216–
1221.
(12) (a) Ballardini, R.; Balzani, V.; Dehaen, W.; Dell’Erba, A. E.; Raymo,
F. M.; Stoddart, J. F.; Venturi, M. Eur. J. Org. Chem. 2000, 591–602. (b)
Ashton, P. R.; Ballardini, R.; Balzani, V.; Credi, A.; Dress, K. R.; Ishow, E.;
Kleverlaan, C. J.; Kocian, O.; Preece, J. A.; Spencer, N.; Stoddart, J. F.;
Venturi, M.; Wenger, S. Chem.;Eur. J. 2000, 6, 3558–3574. (c) Brouwer,
A. M.; Frochot, C.; Gatti, F. G.; Leigh, D. A.; Mottier, L.; Paolucci, F.;
Roffia, S.; Wurpel, G. W. H. Science 2001, 291, 2124–2128. (d) Saha, S.;
Johansson, L. E.; Flood, A. H.; Tseng, H.-R.; Zink, J. I.; Stoddart, J. F.
Small 2005, 1, 87–90.
(13) Sidhaye, D. S.; Kashyap, S.; Sastry, M.; Hotha, S.; Prasad, B. L. V.
Langmuir 2005, 21, 7979–7984.
(14) Rakotondradany, F.; Whitehead, M. A.; Lebuis, A.-M.; Sleiman,
H. F. Chem.;Eur. J. 2003, 9, 4771–4780.
(15) (a) Hirose, T.; Matsuda, K.; Irie, M. J. Org. Chem. 2006, 71, 7499–7508.
(16) (a) Mueller, M.; Zentel, R. Macromolecules 1994, 27, 4404–4406. (b)
Maxein, G.; Zentel, R. Macromolecules 1995, 28, 8438–8440. (c) Mueller, M.;
Zentel, R. Macromolecules 1996, 29, 1609–1617. (d) Mayer, S.; Maxein, G.;
Zentel, R. Macromolecules 1998, 31, 8522–8525.
(17) (a) Irie, M. Molecular Switches; Feringa, B. L., Ed.; Willey, VCH:
Weinheim, Germany, 2001; Sec. 2, “Photoswitchable Molecular Systems
Based on Diarylethenes”. (b) Feringa, B. L.; van Delden, R. A.; ter Wiel,
M. K. J. Molecular Switches; Feringa, B. L., Ed.; Willey, VCH: Weinheim,
Germany, 2001; Sec. 5, “Chiroptical Molecular Switches”.
(18) Fujimoto, T.; Sakata, Y.; Kaneda, T. Chem. Commun. 2000, 2143–
2144.
~
(19) Dawson, R. E.; Lincoln, S. F.; Easton, C. J. Chem. Commun. 2008,
3980–3982.
(20) (a) Hoshino, T.; Miyauchi, M.; Kawaguchi, Y.; Yamaguchi, H.;
Harada, A. J. Am. Chem. Soc. 2000, 122, 9876–9877. (b) Tsukagoshi, S.;
Miyawaki, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Org. Lett. 2007,
9, 1053–1055. (c) Li, S.; Taura, D.; Hashidzume, A.; Takashima, Y.;
Yamaguchi, H.; Harada, A. Chem. Lett. 2010, 39, 242–243. (d) Li, S.; Taura,
D.; Hashidzume, A.; Harada, A. Chem.;Asian J. 2010, 5, 2281–2289.
(21) Tomimasu, N.; Kanaya, A.; Takashima, Y.; Yamaguchi, H.; Har-
ada, A. J. Am. Chem. Soc. 2009, 131, 12339–12343.
(22) Yamauchi, K.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H.;
Harada, A. J. Am. Chem. Soc. 2008, 130, 5024–5025.
(23) Kuad, P.; Miyawaki, A.; Takashima, Y.; Yamaguchi, H.; Harada, A.
J. Am. Chem. Soc. 2007, 129, 12630–12631.
(24) Herrmann, W.; Wehrle, S.; Wenz, G. Chem. Commun. 1997, 1709–
1710.
J. Org. Chem. Vol. 76, No. 2, 2011 493