ACS Catalysis p. 2330 - 2342 (2018)
Update date:2022-08-04
Topics:
Zhang, Teng
Mazaud, Louis
Chamoreau, Lise-Marie
Paris, Céline
Proust, Anna
Guillemot, Geoffroy
We report on a site-isolated model for Ti(IV) by reacting [Ti(iPrO)4] with the silanol-functionalized polyoxotungstates [XW9O34-x(tBuSiOH)3]3- (X = P, x = 0, 1; X = Sb, x = 1, 2) in tetrahydrofuran. The resulting titanium(IV) complexes [XW9O34-x(tBuSiO)3Ti(OiPr)]3- (X = P, 3; X = Sb, 4) were obtained in monomeric forms both in solution and in the solid state, as proved by diffusion NMR experiments and by X-ray crystallographic analysis. Anions 3 and 4 represent relevant soluble models for heterogeneous titanium silicalite epoxidation catalysts. The POM scaffolds feature slight conformational differences that influence the chemical behavior of 3 and 4 as demonstrated by their reaction with H2O. In the case of 3, the hydrolysis reaction of the isopropoxide ligand is only little shifted toward the formation of a monomeric [PW9O34(tBuSiO)3Ti(OH)]3- (5) species [log K = -1.96], whereas 4 reacted readily with H2O to form a μ-oxo bridged dimer {[SbW9O33(tBuSiO)3Ti]2O}6- (6). The more confined was the coordination site, the more hydrophobic was the metal complex. By studying the reaction of 3 and 4 with hydrogen peroxide using NMR and Raman spectroscopies, we concluded that the reaction leads to the formation of a titanium-hydroperoxide Ti-(η1-OOH) moiety, which is directly involved in the epoxidation of the allylic alcohol 3-methyl-2-buten-1-ol. The combined use of both spectroscopies also led to understanding that a shift of the acid-base equilibrium toward the formation of Ti(η2-O2) and H3O+ correlates with the partial hydrolysis of the phosphotungstate scaffold in 3. In that case, the release of protons also catalyzed the oxirane opening of the in situ formed epoxide, leading to an increased selectivity for 1,2,3-butane-triol. In the case of the more stable [SbW9O33(tBuSiO)3Ti(OiPr)]3- (4), the evolution to Ti(η2-O2) peroxide was not detected by Raman spectroscopy, and we performed reaction progress kinetic analysis by NMR monitoring the 3-methyl-2-buten-1-ol epoxidation to assess the efficiency and integrity of 4 as precatalyst.
View Morewebsite:http://www.sagechem.com
Contact:+86-571-86818502
Address:Room C1301, New Youth Plaza, 8 Jia Shan Road, Hangzhou, China
WUHU HUAHAI BIOLOGY ENGINEERING CO LTD
Contact:+86-553-3836920
Address:7/F NO.82 LAODONG ROAD WUHU CHINA
HUNAN CHEMAPI BIOLOGICAL TECHNOLOGY CO.,LTD.
Contact:+86-186-02659358
Address:1004, building 3, Wanke Jinsemaitianyuan, 498 Guitang Road, Yuhua District, Changsha City, Hunan Province, China
chengdu firsterchem Pharmaceutical Co., Ltd.
Contact:028-66825849
Address:chengdu
Shanghai Hongbang Medical Technology CO.,. Ltd
Contact:13671516988 /18917636693
Address:Room1, No67 Building, Yongde Road369, Wujing Town, Minhang Districy, Shanghai CIty, China.
Doi:10.1016/S0022-328X(03)00455-8
(2003)Doi:10.1021/jo00440a017
(1977)Doi:10.1016/S0008-6215(00)80559-5
(1977)Doi:10.1021/jm0502034
(2005)Doi:10.1007/BF00938381
(1979)Doi:10.1021/ja01163a600
(1950)