ACS Catalysis p. 2330 - 2342 (2018)
Update date:2022-08-04
Topics:
Zhang, Teng
Mazaud, Louis
Chamoreau, Lise-Marie
Paris, Céline
Proust, Anna
Guillemot, Geoffroy
We report on a site-isolated model for Ti(IV) by reacting [Ti(iPrO)4] with the silanol-functionalized polyoxotungstates [XW9O34-x(tBuSiOH)3]3- (X = P, x = 0, 1; X = Sb, x = 1, 2) in tetrahydrofuran. The resulting titanium(IV) complexes [XW9O34-x(tBuSiO)3Ti(OiPr)]3- (X = P, 3; X = Sb, 4) were obtained in monomeric forms both in solution and in the solid state, as proved by diffusion NMR experiments and by X-ray crystallographic analysis. Anions 3 and 4 represent relevant soluble models for heterogeneous titanium silicalite epoxidation catalysts. The POM scaffolds feature slight conformational differences that influence the chemical behavior of 3 and 4 as demonstrated by their reaction with H2O. In the case of 3, the hydrolysis reaction of the isopropoxide ligand is only little shifted toward the formation of a monomeric [PW9O34(tBuSiO)3Ti(OH)]3- (5) species [log K = -1.96], whereas 4 reacted readily with H2O to form a μ-oxo bridged dimer {[SbW9O33(tBuSiO)3Ti]2O}6- (6). The more confined was the coordination site, the more hydrophobic was the metal complex. By studying the reaction of 3 and 4 with hydrogen peroxide using NMR and Raman spectroscopies, we concluded that the reaction leads to the formation of a titanium-hydroperoxide Ti-(η1-OOH) moiety, which is directly involved in the epoxidation of the allylic alcohol 3-methyl-2-buten-1-ol. The combined use of both spectroscopies also led to understanding that a shift of the acid-base equilibrium toward the formation of Ti(η2-O2) and H3O+ correlates with the partial hydrolysis of the phosphotungstate scaffold in 3. In that case, the release of protons also catalyzed the oxirane opening of the in situ formed epoxide, leading to an increased selectivity for 1,2,3-butane-triol. In the case of the more stable [SbW9O33(tBuSiO)3Ti(OiPr)]3- (4), the evolution to Ti(η2-O2) peroxide was not detected by Raman spectroscopy, and we performed reaction progress kinetic analysis by NMR monitoring the 3-methyl-2-buten-1-ol epoxidation to assess the efficiency and integrity of 4 as precatalyst.
View MoreJinan Boss Chemical Industry Co., Ltd.【revoke the business license】
website:http://www.chemboss.com.cn
Contact:+86-531-58591595
Address:No2.Hualong Road, Jinan, China
Hangzhou Mole's Science & Technology Co.,Ltd.(expird)
Contact:+86-571-56880228
Address:15F Guodu development Building, NO.182 Zhaohui Road
SHIJIAZHUANG HENRYTE CHEMICALS CO,.LTD(expird)
Contact:+86-311-85208698 311-80837698
Address:NO.166, yuhua west road, SHIJIAZHUANG, China
Jiangsu Zenji Pharmaceuticals LTD
Contact:+86-025-83172562; +1-224-888-1133(USA)
Address:No.5 Xinmofan Road
Contact:021-36356756
Address:Room601,Building No.14,280 Yangcheng Road,Shanghai
Doi:10.1016/S0022-328X(03)00455-8
(2003)Doi:10.1021/jo00440a017
(1977)Doi:10.1016/S0008-6215(00)80559-5
(1977)Doi:10.1021/jm0502034
(2005)Doi:10.1007/BF00938381
(1979)Doi:10.1021/ja01163a600
(1950)