Organic Letters
Letter
Scheme 5. Asymmetric Synthesis of (−)-Trachelanthamidine
Author
Abhijeet M. Sarkale − Discipline of Chemistry, Indian Institute of
Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors are grateful to the SERB, India for the Core
Research Grant (CRG/2018/000575) and IIT Gandhinagar for
financial support.
REFERENCES
■
(1) (a) Finefield, J. M.; Sherman, D. H.; Kreitman, M.; Williams, R. M.
Angew. Chem., Int. Ed. 2012, 51, 4802−4836. (b) Mori, K. Chirality
2011, 23, 449−462.
In summary, we have developed the first stereodivergent
strategy for the asymmetric synthesis of all four stereoisomers of
1-hydroxymethylpyrrolizidine alkaloids, namely, (+)-isoretro-
necanol 1,3 (−)-isoretronecanol ent-1,4 (+)-laburnine 17,5 and
(−)-trachelanthamidine ent-176 using the common synthetic
intermediates. The self-Mannich reaction of methyl 4-
oxobutanoate 5 with PMP-amine 6 catalyzed by chiral
secondary amine is considered as the key reaction. The
optimization of the anti-selective self-Mannich reaction of
methyl 4-oxobutanoate 5 with PMP-amine 6 is successfully
achieved. The conversion of the anti-selective self-Mannich
adduct 7 to (+)-isoretronecanol 1 is accomplished via PMP-
lactam 4, lactone 3, and bicyclic lactam 12 as the synthetic
intermediates. The asymmetric synthesis of the enantiomeric 1-
hydroxymethylpyrrolizidine alkaloid, (−)-isoretronecanol ent-1,
is also realized using enantiomeric catalyst ent-11 via the
enantiomers of these common intermediates. The asymmetric
synthesis of the other diastereomer, (+)-laburnine 17, and its
enantiomer, (−)-trachelanthamidine ent-17, is achieved using
the syn-selective self-Mannich reaction catalyzed by L-proline 13
and D-proline ent-13, respectively. Using this methodology, a
stereodivergent synthesis of 1-hydroxymethylpyrrolizidine
alkaloids is achieved in eight steps with three column
purifications (22−26% overall yield). Further applications of
the anti-selective self-Mannich reaction for the synthesis of other
bioactive natural products are currently underway in our
laboratory.
̈
(2) Schramm, S.; Kohler, N.; Rozhon, W. Molecules 2019, 24, 498.
̈
̈
̈
(3) Brandange, S.; Luning, B.; Moberg, C.; Sjostrand, E. Acta Chem.
Scand. 1972, 26, 2558−2560.
(4) Hart, N. K.; Johns, S. R.; Lamberton, J. A. Aust. J. Chem. 1968, 21,
1393−1395.
̈
(5) (a) Galinovsky, F.; Goldberger, H.; Pohm, M. Monatsh. Chem.
1949, 80, 550−554. (b) Hart, N. K.; Lamberton, J. A. Aust. J. Chem.
1966, 19, 1259−1264.
(6) (a) Tsuda, Y.; Marion, L. Can. J. Chem. 1963, 41, 1919−1923.
(b) Catalfamo, J. L.; Martin, W. B., Jr; Birecka, H. Phytochemistry 1982,
21, 2669−2675.
(7) Hoang, L. S.; Tran, M. H.; Lee, J. S.; To, D. C.; Nguyen, V. T.;
Kim, J. A.; Lee, J. H.; Woo, M. H.; Min, B. S. Chem. Pharm. Bull. 2015,
63, 481−484.
(8) Ikeda, Y.; Nonaka, H.; Furumai, T.; Igarashi, Y. J. Nat. Prod. 2005,
68, 572−573.
(9) Al-Jaber, H. I.; Mosleh, I. M.; Mallouh, A.; Abu Salim, O. M.; Abu
Zarga, M. H. J. Asian Nat. Prod. Res. 2010, 12, 814−820.
(10) Reina, M.; Gonzalez-Coloma, A.; Gutierrez, C.; Cabrera, R.;
Henriquez, J.; Villarroel, L. Phytochemistry 1997, 46, 845−853.
(11) Flynn, D. L.; Zabrowski, D. L.; Becker, D. P.; Nosal, R.; Villamil,
C. I.; Gullikson, G. W.; Moummi, C.; Yang, D. C. J. Med. Chem. 1992,
35, 1486−1489.
(12) (a) Brambilla, M.; Davies, S. G.; Fletcher, A. M.; Thomson, J. E.
Tetrahedron: Asymmetry 2014, 25, 387−403. (b) Bertrand, S.;
Hoffmann, N.; Pete, J.-P. Tetrahedron Lett. 1999, 40, 3173−3174.
(c) Tatsuta, K.; Takahashi, H.; Amemiya, Y.; Kinoshita, M. J. Am. Chem.
Soc. 1983, 105, 4096−4097. (d) Bertrand, S.; Hoffmann, N.; Pete, J.-P.
Eur. J. Org. Chem. 2000, 2000, 2227−2238. (e) Craig, D.; Hyland, C. J.
T.; Ward, S. E. Synlett 2006, 13, 2142−2144. (f) Ishibashi, H.; Uemura,
N.; Nakatani, H.; Okazaki, M.; Sato, T.; Nakamura, N.; Ikeda, M. J. Org.
Chem. 1993, 58, 2360−2368.
ASSOCIATED CONTENT
* Supporting Information
■
sı
The Supporting Information is available free of charge at
(13) (a) Robertson, J.; Stevens, K. Nat. Prod. Rep. 2017, 34, 62−89.
(b) Chogii, I.; Njardarson, J. T. Angew. Chem., Int. Ed. 2015, 54, 13706−
13710. (c) David, O.; Blot, J.; Bellec, C.; Fargeau-Bellassoued, M.-C.;
Complete experimental procedures and characterization
of new products, NMR spectra, and HPLC chromato-
FAIR data, including the primary NMR FID files, for
compounds 1, 3, 4, 12, and 14−17 (ZIP)
́
́
Haviari, G.; Celerier, J.-P.; Lhommet, G.; Gramain, J.-C.; Gardette, D. J.
Org. Chem. 1999, 64, 3122−3131. (d) Davies, S. G.; Fletcher, A. M.;
Foster, E. M.; Houlsby, I. T. T.; Roberts, P. M.; Schofield, T. M.;
Thomson, J. E. Org. Biomol. Chem. 2014, 12, 9223−9235. (e) Delaye,
́
P.-O.; Pradhan, T. K.; Lambert, E.; Vasse, J.-L.; Szymoniak, J. Eur. J.
Org. Chem. 2010, 2010, 3395−3406. (f) Brambilla, M.; Davies, S. G.;
Fletcher, A. M.; Roberts, P. M.; Thomson, J. E.; Zimmer, D.
Tetrahedron 2016, 72, 7417−7429.
(14) (a) Koley, D.; Krishna, Y.; Srinivas, K.; Khan, A. A.; Kant, R.
Angew. Chem., Int. Ed. 2014, 53, 13196−13200. (b) Han, X.; Zhong, F.;
AUTHOR INFORMATION
Corresponding Author
■
Chandrakumar Appayee − Discipline of Chemistry, Indian
Institute of Technology Gandhinagar, Gandhinagar, Gujarat
D
Org. Lett. XXXX, XXX, XXX−XXX