Quinone Methide Sensitivity to Electronic Modulation
A R T I C L E S
Scheme 3. Reversible and Irreversible Formation of QM Adducts
targets (e.g., Et-743 with duplex DNA, Scheme 1). Reversibility
then extends the effective lifetime of electrophiles and conse-
quently enhances their potential for selective biological activity.
Such activity has been investigated with carcinogens such as
malondialdehyde5-8 and a variety of anticancer drug candidates
based on cyclopropylpyrroloindole.9,10 For two closely related
drug candidates, duocarmycin SA (duoSA) is 20-fold more
cytotoxic than duocarmycin A (duoA). This result is likely a
function of the slower reaction of duoSA vs that of duoA with
nucleophiles and its faster release from adducts formed by
nucleophilic coupling.11,12 A direct correlation between revers-
ibility of DNA adducts and cytotoxicity was also extended to a
number of additional cyclopropylpyrroloindole derivatives as
well.13
Our laboratories and others have applied the reversibility of
quinone methide (QM) generation for efficient cross-linking and
target-promoted alkylation of DNA.14-18 Related QMs had
previously been implicated in biological activation of 2,6-di-
tert-butyl-4-methylphenol,19 tamoxifen,20 and a variety of natural
products including mitomycin21 and certain diterpenone cat-
echols.22 Initial model studies suggested a selectivity of QM
for weak nucleophiles and an ability of some adducts to form
reversibly.19,23-26 Further investigation revealed that this unusual
selectivity was a function of QM adduct stability rather than
initial product formation.27-29 In contrast to earlier assumptions,
the strongest nucleophiles of DNA reacted most quickly with a
simple o-QM model to form kinetic products. However, these
products are not stable and regenerate the o-QM for ultimate
transfer to weaker nucleophiles that react irreversibly and form
thermodynamic products (Scheme 3).27,30
Computational studies on this same o-QM model anticipated
the experimental results with remarkable accuracy.28,29 A low
value for ∆Gq was calculated for both adduct formation and
QM regeneration with strong nucleophiles such as dC N3, dA
N1, and dG N7 (Scheme 2), whereas ∆Gq values for addition
of the exo-amino groups (dG N2 and dA N6) to o-QM were
considerably higher and essentially irreversible. The free energy
of activation should also be sensitive to variations in the
electronic properties of the intermediate QMs. A relatively
electron-rich derivative may be more stable and hence more
readily generated than its electron-poor counterpart. Hence,
electron-withdrawing and -donating groups attached directly on
the QM should influence the rate of QM formation and adduct
stability. A series of such derivatives has now been prepared to
test this possibility and determine the sensitivity of the QMs to
a variety of substituents. A method for predictably manipulating
QM stability will be indispensable for optimizing the kinetics
and selectivity of target-promoted alkylation of DNA15 and will
additionally facilitate use of QMs for mechanism-based in-
activation of enzymes31 and drug release by self-immolative,
or cascade-release, dendrimers.32-34 Quinone methides are also
used as intermediates in organic synthesis35 and can be stabilized
by metal coordination.36-39
Results and Discussion
A limited number of studies previously began to explore
substituent effects on QM reactivity,40-43 but no data was
available to estimate structural effects influencing the kinetics
or product distribution of the deoxynucleoside reaction. Electron-
donating and -withdrawing groups have now been placed para
and meta to the QM methylene to avoid complications from
steric effects. The products of reversible reaction were expected
to be most susceptible to changes in the QM stability since their
presence depends on the rates of both nucleophilic addition to
the QM as well as subsequent elimination to regenerate the QM.
In contrast, the products formed irreversibly should depend on
only the relative strength of their nucleophilic components to
compete for initial addition to the QM.
(5) Dedon, P. C.; Plastaras, J. P.; Rouzer, C. A.; Marnett, L. J. Proc. Natl.
Acad. Sci. U.S.A. 1998, 95, 11113-11116.
(6) Mao, H.; Schnetz-Boutaud, N. C.; Weisenseel, J. P.; Marnett, L. J.; Stone,
M. P. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 6615-6620.
(7) Plastaras, J. P.; Riggins, J. N.; Otteneder, M.; Marnett, L. J. Chem. Res.
Toxicol. 2000, 13, 1235-1242.
(8) Riggins, J. N.; Daniels, S.; Rouzer, C. A.; Marnett, L. J. J. Am. Chem.
Soc. 2004, 126, 8237-8243.
(9) Boger, D. L.; Johnson, D. S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1438-
1474.
(10) Lee, S.-J.; Seaman, F. C.; Sun, D.; Xiong, H.; Kelly, R. C.; Hurley, L. H.
J. Am. Chem. Soc. 1997, 119, 3434-3442.
(11) Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1993, 115, 9872-9873.
(12) Boger, D. L.; Garbaccio, R. M. Acc. Chem. Res. 1999, 32, 1043-1052.
(13) Asai, A.; Nagamura, S.; Saito, H.; Takahashi, I.; Nakano, H. Nucleic Acids
Res. 1994, 22, 88-93.
(14) Veldhuyzen, W. F.; Pande, P.; Rokita, S. E. J. Am. Chem. Soc. 2003, 125,
14005-14013.
(15) Zhou, Q.; Rokita, S. E. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 15452-
15457.
Formation and Decomposition of dC Adducts Generated
from QMs of Varying Reactivity. Our initial investigation to
(16) Wang, P.; Liu, R.; Wu, X.; Ma, H.; Cao, X.; Zhou, P.; Zhang, J.; Weng,
X.; Zhang, X. L.; Zhou, X.; Weng, L. J. Am. Chem. Soc. 2003, 125, 1116-
1117.
(17) Richter, S. N.; Maggi, S.; Mels, S. C.; Palumbo, M.; Freccero, M. J. Am.
Chem. Soc. 2004, 126, 13973-13979.
(30) Weinert, E. E.; Frankenfield, K. N.; Rokita, S. E. Chem. Res. Toxicol. 2005,
18, 1364-1370.
(31) Wakselman, M. New J. Chem. 1983, 7, 439-447.
(32) de Groot, F. M. H.; Albrecht, C.; Koekkoek, R.; Beusker, P. H.; Scheeren,
H. W. Angew. Chem., Int. Ed. 2003, 42, 4490-4494.
(33) Li, S.-J.; Szalai, M. L.; Kevwitch, R. M.; McGrath, D. V. J. Am. Chem.
Soc. 2003, 125, 10516-10517.
(34) Shamis, M.; Lode, H. N.; Shabat, D. J. Am. Chem. Soc. 2004, 126, 1726-
1731.
(35) Van De Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367-5405.
(36) Amouri, H.; Besace, Y.; Le Bras, J. J. Am. Chem. Soc. 1998, 120, 6171-
6172.
(18) Wang, P.; Song, Y.; Zhang, L.; He, H.; Zhou, X. Curr. Med. Chem. 2005,
12, 2893-2913.
(19) Lewis, M. A.; Yoerg, D. G.; Bolton, J. L.; Thompson, J. A. Chem. Res.
Toxicol. 1996, 9, 1368-1374.
(20) Fan, P. W.; Zhang, F.; Bolton, J. L. Chem. Res. Toxicol. 2000, 13, 45-52.
(21) Tomasz, M. Chem. Biol. 1995, 2, 575-579.
(22) Zhou, Q.; Zuniga, M. A. Chem. Res. Toxicol. 2005, 18, 382-388.
(23) Angle, S. R.; Yang, W. J. Org. Chem. 1992, 57, 1092-1097.
(24) Angle, S. R.; Rainer, J. D.; Woytowicz, C. J. Org. Chem. 1997, 62, 5884-
5892.
(25) Pande, P.; Shearer, J.; Yang, J.; Greenberg, W. A.; Rokita, S. E. J. Am.
Chem. Soc. 1999, 121, 6773-6779.
(37) Amouri, H.; le Bras, J. Acc. Chem. Res. 2002, 35, 501-510.
(38) Rabin, O.; Vigalok, A.; Milstein, D. Chem. Eur. J. 2000, 6, 454-457.
(39) Vigalok, A.; Milstein, D. Acc. Chem. Res. 2001, 34, 798-807.
(40) Filar, L. J.; Winstein, S. Tetrahedron Lett. 1960, 9-16.
(41) Loubinoux, B.; Miazimbakana, J.; Gerardin, P. Tetrahedron. Lett. 1989,
30, 1939-1942.
(26) Veldhuyzen, W.; Lam, Y.-f.; Rokita, S. E. Chem. Res. Toxicol. 2001, 14,
1345-1351.
(27) Veldhuyzen, W. F.; Shallop, A. J.; Jones, R. A.; Rokita, S. E. J. Am. Chem.
Soc. 2001, 123, 11126-11132.
(28) Freccero, M.; Di Valentin, C.; Sarzi-Amade`, M. J. Am. Chem. Soc. 2003,
125, 3544-3553.
(42) Bolton, J. L.; Valerio, L. G.; Thompson, J. A. Chem. Res. Toxicol. 1992,
5, 816-822.
(29) Freccero, M.; Gandolfi, R.; Sarzi-Amade`, M. J. Org. Chem. 2003, 68,
6411-6423.
(43) Bolton, J. L.; Comeau, E.; Vukomanovic, V. Chem. Biol. Interact. 1995,
95, 279-290.
9
J. AM. CHEM. SOC. VOL. 128, NO. 36, 2006 11941