The metal-catalyzed coupling reaction of alkynes or
their metalated derivatives (such as alkynylstannanes5
or alkynylsilanes6) with organic halides in the presence
of CO provides an alternative approach to the synthesis
of alkynyl ketones under atmospheric conditions with
atom economy. In this regard, Mori’s recent contribution
to the direct coupling of terminal alkynes with aryl
iodides is a preferred method.7 This transformation was
accomplished by using aqueous ammonia as a base in
THF, and the reaction was carried out at room temper-
ature in the presence of PdCl2(PPh3)2 with or without
CuI.
We recently reported a mild protocol for the copper-
free Sonogashira coupling of aryl iodides with terminal
alkynes in water under aerobic conditions. The use of
PdCl2 (1 mol %) in the presence of pyrrolidine allows the
coupling reaction to proceed at room temperature or at
50 °C with good to excellent yields.8
Pd-Catalyzed Copper-Free Carbonylative
Sonogashira Reaction of Aryl Iodides with
Alkynes for the Synthesis of Alkynyl
Ketones and Flavones by Using Water as a
Solvent
Bo Liang,† Mengwei Huang,† Zejin You,†
Zhengchang Xiong,† Kui Lu,† Reza Fathi,*,‡
Jiahua Chen,*,† and Zhen Yang*,†,‡
Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry,
State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Science, and Laboratory of
Chemical Genetics, ShenZhen Graduate School, Peking
University, Beijing, 100871, China, and VivoQuest, Inc., 711
Executive Boulevard, Valley Cottage, New York 10989
Presently, the use of water as a reaction medium for
organic synthesis attracts further attention due to its
potential ecological impact.9 We report herein our con-
tinual efforts to utilize water as a reaction medium to
synthesize alkynyl ketones by the Pd-catalyzed carbo-
nylative reactions of terminal alkynes with phenyl io-
dides.
Received March 11, 2005
We initated our study for the Pd-catalyzed carbonyla-
tive coupling reaction in water with 4-iodoanisal and
1-hexyne as substrates and pyrrolidine as a base in the
presence of PPh3 under the conditions listed in Scheme
1. Interestingly, under such conditions, aryl amide A was
generated as the major product (ca. 40%), jointly with
the direct Sonogashira coupling product B (ca. 25%). On
The Pd-catalyzed copper-free carbonylative Sonogashira
coupling reaction to synthesize alkynyl ketones from termi-
nal alkynes and aryl iodides was achieved by using water
as a solvent. The reaction was carried out at room temper-
ature under balloon pressure of CO with Et3N as a base.
The developed method was successfully applied to the
synthesis of flavones.
(3) (a) Sheng, H.; Lin, S.; Huang, Y. Tetrahedron Lett. 1986, 27,
4893. (b) Trost, B. M.; Schmidt, T. J. Am. Chem. Soc. 1988, 110, 2301.
(c) Matsuo, K.; Sakaguchi, Y. Heterocycles 1996, 43, 2553. (d) Jeevan-
dandam, A.; Narkunan, K.; Cartwright, C.; Ling, Y.-C. Tetrahedron
Lett. 1999, 40, 4841. (e) Cabarrocas, G. Tetrahedron: Asymmetry 2000,
11, 2483. (f) Kel’in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem.
Soc. 2001, 123, 2074. (g) Chang, K.-T.; Choi, S.-H.; Kim, S.-H.; Yoon,
Y.-J.; Lee, W. S. J. Chem. Soc., Perkin Trans. 1 2002, 207. (h) Kel’in
A. V.; Gevorgyan, V. J. Org. Chem. 2002, 67, 95.
Alkynyl ketones appear in many biologically active
molecules1 and play crucial roles as intermediates in the
synthesis of natural products2 and druglike molecules.3
Direct coupling of alkynyl organometallic reagents4 with
acid chlorides has played an important role in making
alkynyl ketones. However, these methods have to be
handled in dry solvents under an inert atmosphere.
(4) (a) Davis, R. B.; Scheiber, D. H. J. Am. Chem. Soc. 1956, 78,
1675. (b) Normant, J. F. Synthesis 1972, 63. (c) Logue, M. W.; Moore,
G. L. J. Org. Chem. 1975, 40, 131. (d) Bourgain, M.; Normant, J. F.
Bull. Soc. Chim. Fr. 1973, 2137. (e) Fontaine, M.; Chauvelier, J.;
Barchewitz, P. Bull. Soc. Chim. Fr. 1962, 2145. (f) Schmidt, U.;
Schwochau, M. Chem. Ber. 1964, 97, 1649. (g) Compagnon, P. L.;
Grosjean, B.; Lacour, M. Bull. Soc. Chim. Fr. 1975, 779. (h) Yashina,
O. G.; Zarva, T. V.; Vereshchagin, L. I. Zh. Org. Khim. 1967, 3, 219;
Chem. Abstr. 1967, 66, 94664g. (i) Vereshchagin, L. I.; Yashina, O. G.;
Zarva, T. V. Zh. Org. Khim. 1966, 2, 1895. (j) Walton, D. R. M.; Waugh,
F. J. Organomet. Chem. 1972, 37, 45. (k) Logue, M. W.; Teng, K. J.
Org. Chem. 1982, 47, 2549.
† Peking University.
‡ VivoQuest, Inc.
(1) (a) Faweett, C. H.; Firu, R. D.; Spencer, D. M. Physiol. Plant
Pathol. 1971, 1, 163. (b) Imai, K. J. Pharm. Soc. (Japan) 1956, 76,
405. (c) Mead, D.; Asato, A. E.; Denny, M.; Liu, R. S. H.; Hanzawa, Y.;
Taguchi, T.; Yamada, A.; Kobayashi, N.; Hosoda, A.; Kobayashi, Y.
Tetrahedron Lett. 1987, 28, 259. (d) Chowdhury, C.; Kundu, N. G.
Tetrahedron 1999, 55, 7011. (e) Quesnelle, C. A.; Gill, P.; Dodier, M.;
St. Laurent, D.; Serrano-Wu, M.; Marinier, A.; Martel, A.; Mazzucco,
C. E.; Stickle, T. M.; Barrett, J. F.; Vyas, D. M.; Balasubramanian, B.
N. Bioorg. Med. Chem. Lett. 2003, 13, 519.
(5) (a) Goure, W. F.; Wright, M. E.; Davis, P. D.; Labadie, S. S.; Stille,
J. K. J. Am. Chem. Soc. 1984, 106, 6417. (b) Grisp, G. T.; Scott, W. J.;
Stille, J. K. J. Am. Chem. Soc. 1984, 106, 7500.
(6) Arcadi, A.; Cacchi, S.; Marinelli, F.; Pace, P.; Sanzi, G. Synlett
1995, 823.
(2) (a) Kalinin, V. N.; Shostakovsky, M. V.; Ponamaryov, A. B.
Tetrahedron Lett. 1990, 31, 4073. (b) Ciattini, P. G.; Morera, E.; Ortar,
G.; Rossi, S. S. Tetrahedron 1991, 47, 6449. (c) Torri, S. Okumoto H.;
Xu, L.-H.; Sadakane, M.; Shostakovsky, M. V.; Ponomaryov, A. B.;
Kalinin, V. N. Tetrahedron 1993, 49, 6773. (d) Bernard, D.; Daniel,
C.; Robert, L. Tetrahedron Lett. 1996, 37, 1019. (e) Dodero, V. I.; Koll,
L. C.; Faraoni, M. B.; Mitchell, T. N.; Podesta, J. C. J. Org. Chem.
2003, 68, 10087. (f) Marco-Contelles, J.; de Opazo, E. J. Org. Chem.
2002, 67, 3705. (g) Vong, B. G.; Kim, S. H.; Abraham, S.; Theodorakis,
E. A. Angew. Chem. Int. Ed. 2004, 43, 3947. (h) Trost, B. M.; Ball, Z.
T. J. Am. Chem. Soc. 2004, 126, 13942.
(7) Mohamed Ahmed, M. S.; Mori, A. Org. Lett. 2003, 5, 3057.
(8) Liang, B.; Dai, M.; Chen, J.; Yang, Z. J. Org. Chem. 2005, 70,
391.
(9) (a) Lubineau, A.; Auge´, J.; Queneau, Y. Synthesis 1994, 741. (b)
Li, C.-J.; Chan, T.-H. Organic Reactions in Aqueous Media; Wiley: New
York, 1997. (c) Organic Synthesis in Water; Grieco, P. A., Ed.; Academic
and Professional: London, 1998. (d) Yorimitsu, H.; Shinokubo, H.;
Oshima, K. Synlett 2002, 674. (e) Lindsto¨m, M. U. Chem. Rev. 2002,
2751. (f) Lancaster, M. Green Chemistry; Royal Society of Chemistry:
Cambridge, UK, 2002. (g) Adams, D. J.; Dyson, P. J.; Tavener, S. J.
Chemistry in Alternative Reaction Media; Wiley: New York, 2004.
10.1021/jo050498t CCC: $30.25 © 2005 American Chemical Society
Published on Web 06/17/2005
J. Org. Chem. 2005, 70, 6097-6100
6097