Y. Deng et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5363–5367
5367
W. W.; Kati, W. M.; Liu, D.; Liu, Y.; Maring, C. j.; Masse, S.; McDaniel, K. F.;
Middleton, T.; Mo, H.; Molla, A.; Montgomery, D.; Pratt, J. K.; Rockway, T. W.;
Zhang, R.; Kempf, D. J. Bioorg. Med. Chem. Lett. 2006, 16, 3367; (f) Nittoli, T.;
Curran, K.; Insaf, S.; DiGrandi, M.; Orlowski, M.; Chopra, R.; Agarwal, A.; Howe,
A. Y. M.; Prashad, A.; Floyd, M. B.; Johnson, B.; Sutherland, A.; Wheless, K.; Feld,
B.; O’Connell, J.; Mansour, T. S.; Bloom, J. J. Med. Chem. 2007, 50, 2108; (g)
Habermann, J.; Capitò, E.; Ferreira, M. R. R.; Koch, U.; Narjes, F. J. Bioorg. Med.
Chem. Lett. 2009, 19, 633; (h) Powers, J. P.; Piper, D. E.; Li, Y.; Mayorga, V.;
Anzola, J.; Chen, J. M.; Jaen, J. C.; Lee, G.; Liu, J.; Peterson, M. G.; Tonn, G. R.; Ye,
Q.; Walker, N. P. C.; Wang, Z. J. Med. Chem. 2006, 49, 1034.
showed fivefold loss of potency. The combination of tryptophan
with different functional groups at C-5 position was also briefly ex-
plored. The position of the oxygen in the furan group showed little
impact on the potency as 2-furanyl (compound 9e) and 3-furanyl
groups (compound 9j) have similar potency. However, the corre-
sponding thiophene shows fourfold loss of potency and similar re-
sults was observed for 3-fluorophenyl derivative 9h. Consistent
with the molecular model, the bioisosteric replacement of the C-
2 carboxylate was tolerated as long as a hydrogen bond is main-
tained to the protein (Fig. 2). In fact, the solvent-accessibility of this
group is consistent with the modest effect observed upon elabora-
tion at this position.
6. (a) Beaulieu, P. L. Curr. Top. Med. Chem. 2007, 8, 614; (b) Koch, U.; Narjes, F.
Infect. Dis. Drug Targets 2006, 6, 31.
7. Shipps, G. W.; Deng, Y.; Wang, T.; Popovici-Muller, J.; Curran, P. J.; Rosner, K. E.;
Cooper, A. B.; Girijavallabhan, V.; Butkiewicz, N.; Cable, M. Bioorg. Med. Chem.
Lett. 2005, 15, 115.
8. Di Marco, S.; Volpari, C.; Tomei, L.; Altamura, S.; Harper, S.; Narjes, F.; Koch, U.;
Rowley, M.; De Francesco, R.; Migliaccio, G.; Carfi, A. J. Biol. Chem. 2005, 280,
29765.
9. (a) Ikegashira, K.; Oka, T.; Hirashima, S.; Noji, S.; Yamahaka, H.; Hara, Y.;
Adachi, T.; Tsuruha, J.-I.; Doi, S.; Hase, Y.; Noguchi, T.; Ando, I.; Ogura, N.; Ikeda,
S.; Hashimoto, H. J. Med. Chem. 2006, 49, 6950; (b) Hirashima, S.; Oka, T.;
Ikegashira, K.; Noji, S.; Yamanaka, H.; Hara, Y.; Goto, H.; Mizojiri, R.; Nima, Y.;
Noguchi, T.; Ando, I.; Ikeda, S.; Hashimoto, H. Bioorg. Med. Chem. Lett. 2007, 17,
3181.
The most potent inhibitors generated during this optimization
study were subsequently tested in an HCV cell-based replicon as-
say of RNA replication.16 Compound 9e, despite its enzyme po-
tency, had only weak potency in the cell-based assay (ꢀ50
lM),
which led us to believe that this compound might have poor per-
meability likely due to the highly ionizable carboxylic acid group.
Subsequent efforts have focused on replacing the carboxylic acid
with bioisosteres to improve permeability. Moreover, substitution
at unexplored solvent-exposed positions such as N-4 should afford
modulation of physicochemical compound properties with little
effect on intrinsic binding. Further efforts in this series and the re-
sults of cell permeability and activity in the cell-based assays, will
be reported.
10. (a) Senga, K.; Novinson, T.; Wilson, H. R. J. Med. Chem. 1981, 24, 610; (b) Selleri,
S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Gratteri, P.;
Bonaccini, C.; Aiello, Petra M.; Besnard, F.; Renard, S.; Costa, B.; Martini, Cla. J.
Med. Chem. 2003, 46, 310.
11. The X-ray structure of an indole-based inhibitor that binds to the finger-loop
region of NS5B (PDB access code: 2brk) was utilized as the frame of Ref. 8. In
preparation for docking, all ligand and water molecules were deleted and
hydrogen atoms were added and minimized using Macromodel as
implemented in Maestro 8.5 (Schrödinger, LLC, New York, NY, 2009). Docking
of 2 to NS5B was performed using Glide XP (Halgren, T. A.; Murphy, R. B.;
Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L. J. Med. Chem.
2004, 47, 1750; Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J.
J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.;
Francis, P.; Shenkin, P. S. J. Med. Chem. 2004, 47, 1739.) An inner box region (the
ligand midpoint remains within this box during docking) of 10 Å and outer box
region of 24 Å were used. The induced-fit docking protocol (Sherman, W.; Day,
T.; Jacobson, M. P.; Friesner, R. A.; Farid, R. J. Med. Chem. 2006, 49, 534), IFD, was
used to perturb the initial NS5B model in the presence of the docked ligand 2,
In conclusion, suitably substituted 4H-pyrazolo[1,5-a]pyrimi-
din-7-one analogs have been shown to be active against the
NS5B RNA-dependent RNA polymerase. This series was obtained
through conformational constraint of the previously reported ami-
nothiazole series. Through the optimization of the 3, 5, and 2 posi-
tions, compounds with double digit nM potency in the in vitro
enzymatic assay were obtained.
while allowing
a flexible adaptation of the protein environment upon
compound binding. The IFD protocol consists of four steps: (1) softened-
potential docking into the rigid receptor to generate an ensemble of poses; (2)
sampling of protein conformations for each ligand pose generated in the first
step; (3) redocking of the ligand into low energy induced-fit structures from
the previous step; and (4) rescoring by accounting for the docking energy.
Extra precision docking was used during the third and fourth steps (Glide XP
(Schrödinger, LLC, New York, NY, 2009). All the options used during IFD were
standard, as provided by the python interface in Maestro 8.5.
Acknowledgments
The authors would like to acknowledge Drs. B.A. Malcolm, B.M.
Baroudy, and Charles Lesburg for insightful discussions.
References and notes
12. (a) De Francesco, R.; Carfí, A. Adv. Drug Delivery Rev. 2007, 59, 1242–1262; (b)
Beaulieu, P. L. Curr. Opin. Drug Disc. Dev. 2006, 9, 618.
1. Choo, Q.-L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M.
Science 1989, 244, 359.
2. (a) Memon, M. I.; Memon, M. A. J. Viral. Hepat. 2002, 9, 84; (b) Poordad, F. F.;
Tran, T.; Martin, P. Exp. Opin. Emerg. Drugs 2003, 8, 9.
3. (a) Hoofnagle, J. H. Hepatology 1997, 26, S15; (b) Wasley, A.; Alter, M. J. Semin.
Liver Dis. 2000, 20, 1.
4. (a) Beaulieu, P. L.; Montse, L.-B. Curr. Med. Chem. Anti-Infective Agents 2002, 1,
163; (b) Tan, S.-L.; Pause, A.; Shi, Y.; Sonenberg, N. Nat. Rev. Drug Disc. 2002, 1,
867; (c) Adachi, T.; Ago, H.; Habuka, N.; Okuda, K.; Komatsu, M.; Ikeda, S.;
Yatsunami, K. Biochim. Biophys. Acta 2002, 1601, 39.
5. (a) Koch, U.; Narjes, F. Curr. Top. Med. Chem. 2007, 7, 1302; (b) Carroll, S. S.;
Olsen, D. B. Infect. Dis. Drug Targets 2006, 6, 17; (c) Koch, U.; Attenni, B.;
Malancona, S.; Colarusso, S.; Conte, I.; Di Filippo, M.; Harper, S.; Pacini, B.;
Giomini, C.; Thomas, S.; Incitti, I.; Tomei, L.; De Francesco, R.; Altamura, S.;
Matassa, V. G.; Narjes, F. J. Med. Chem. 2006, 49, 1693; (d) Dragovich, P. S.;
Blazel, J. K.; Ellis, D. A.; Han, Q.; Kamran, R.; Kissinger, C. R.; LeBrun, L. A.; Li, L.-
S.; Murphy, D. E.; Noble, M.; Patel, R. A.; Ruebsam, F.; Sergeeva, M. V.; Shah, A.
M.; Showalter, R. E.; Tran, C. V.; Tsan, M.; Webber, S. E.; Kirkovsky, L.; Zhou, Y.
Bioorg. Med. Chem. Lett. 2008, 18, 5635; (e) Krueger, A. C.; Madigan, D. L.; Jiang,
13. Briefly, 50
l
L
reactions containing 20 mM HEPES (pH 7.3), 7.5 mM DTT,
g/mL biotinylated oligoG12, 5 g/mL polyC, 0.5
Ci/mL [3H]-GTP, 10 mM MgCl2, 60 mM NaCl, 100
g/mL BSA, and 6 nM
55) were incubated at room temperature for 50 min in 96-well plates
20 units/mL RNasIN, 0.5
l
l
l
lM
GTP, 1
NS5B (
l
D
with or without test compounds. Assay was terminated by the addition of
50 L 10 mg/mL streptavidin-coated SPA beads supplemented with 100 mM
EDTA, and the incorporation of labeled GTP determined by TopCount
Scintillation Counter. IC50 values were calculated from single experiments
using 11 serial twofold dilutions (0.05–50 M), and data were considered
l
a
l
reliable only when the IC50 value of a positive internal control was within
standard deviation range.
14. Assay was identical to that described in (9) except 5
lM GTP, 20
l
Ci/mL [3H]-
GTP, and 50 nM NS5B (D-21) enzyme form were used in a 3-h reaction at room
temperature.
15. Ishida, T.; Suzuki, T.; Hirashima, S.; Mizutani, K.; Yoshida, A.; Ando, I.; Ikeda, S.;
Adachi, T.; Hashimoto, H. Bioorg. Med. Chem. Lett. 2006, 16, 1859.
16. Lohmann, V.; Körner, F.; Koch, J. O.; herian, U.; Theilmann, L.; Bartenschlager, R.
Science 1999, 285, 110.