Chemical Science
Edge Article
Author contributions
T. Zhang conducted most of the experimental work and wrote
the initial manuscript dra. M. Yu conducted the mechanistic
study experiments. H. Huang conceptualized and directed the
project and nalized the manuscript dra. All authors
contributed to discussions.
Conflicts of interest
The authors declare no conict of interest.
Acknowledgements
This research was supported by the National Natural Science
Foundation of China (21925111 and 21790333).
Fig. 1 Proposed mechanism of the reaction.
Notes and references
indole compounds, which would be attractive for kinetic studies
and drug design.
1 For examples and reviews, see: (a) J. A. Osborn, F. H. Jardine,
J. F. Young and G. Wilkinson, J. Chem. Soc. A, 1966, 1711; (b)
J. Halpern, Science, 1982, 217, 401; (c) S. B. Duckett,
C. L. Newell and R. Eisenberg, J. Am. Chem. Soc., 1994, 116,
10548.
2 For examples and reviews, see: (a) J. Wen, F. Wang and
X. Zhang, Chem. Soc. Rev., 2021, 50, 3211; (b) X. Lu,
B. Xiao, Z. Zhang, T. Gong, W. Su, J. Yi, Y. Fu and L. Liu,
Nat. Commun., 2016, 7, 11129; (c) S. Zhu, N. Niljianskul
and S. L. Buchwald, J. Am. Chem. Soc., 2013, 135, 15746; (d)
S. W. M. Crossley, C. Obradors, R. M. Martinez and
R. A. Shenvi, Chem. Rev., 2016, 116, 8912.
On the basis of the above results and precedent reports,4
a plausible reaction mechanism for this process is proposed in
Fig. 1. The reaction begins with the generation of Fe hydride from
the Fe(III) pre-catalyst and hydrosilane. Then the isonitrile
substrate would abstract a hydrogen radical from Fe hydride
which is proposed to undergo the metal-catalyzed hydrogen atom
transfer (MHAT) process to generate a carbon-centered imidoyl
radical A. Next, intramolecular Giese-type addition of the imidoyl
radical, followed by aromatization leads to radical intermediate
B0. The single-electron transfer process between radical B0 and
the Fe(II) intermediate affords the anion C and concurrently
regenerates the Fe(III) catalyst. Finally, anion C could be proton-
ated by the solvent to obtain the desired indole product.
3 (a) C. L. Bailey and R. S. Drago, Coord. Chem. Rev., 1987, 79,
321; (b) S. Isayama and T. Mukaiyama, Chem. Lett., 1989, 569,
537.
4 For a detailed study on the catalytic mechanism of metal
hydrides, see: (a) H. Jiang, W. Lai and H. Chen, ACS Catal.,
2019, 9, 6080; (b) D. Kim, S. M. W. Rahaman,
B. Q. Mercado, R. Poli and P. L. Holland, J. Am. Chem. Soc.,
2019, 141, 7473; (c) S. L. Shevick, C. V. Wilson, S. Kotesova,
D. Kim, P. L. Holland and R. A. Shenvi, Chem. Sci., 2020,
11, 12401; (d) J. Choi, L. Tang and J. R. Norton, J. Am.
Chem. Soc., 2007, 129, 234.
5 (a) J. Waser and E. M. Carreira, J. Am. Chem. Soc., 2004, 126,
5676; (b) J. Waser, H. Nambu and E. M. Carreira, J. Am. Chem.
Soc., 2005, 127, 8294; (c) J. Waser, B. Gaspar, H. Nambu and
E. M. Carreira, J. Am. Chem. Soc., 2006, 128, 11693; (d)
B. Gaspar and E. M. Carreira, Angew. Chem., Int. Ed., 2007,
46, 4519; (e) B. Gaspar and E. M. Carreira, Angew. Chem.,
Int. Ed., 2008, 47, 5758; (f) B. Gaspar and E. M. Carreira, J.
Am. Chem. Soc., 2009, 131, 13214.
Conclusions
In summary, we have developed a novel and efficient Fe-
catalyzed intramolecular reductive isonitrile–olen coupling
reaction to synthesize indole derivatives, which proceeds
through a Fe–H initiated hydrogen atom transfer process. The
key radical generation step transferring a hydrogen atom to
isonitrile via the MHAT process has not previously been re-
ported. The lower catalyst loading and the insensitiveness to air
and moisture make this reaction practical and attractive in
organic synthesis. Not only is this method a complement to
Fukuyama-indole synthesis, but the catalytic patterns open up
a new development orientation for metal-hydride chemistry.
Further studies on the applications of this MHAT-driven iso-
nitrile hydrogen-radical addition are currently in progress.
6 (a) H. Ishikawa, D. A. Colby, S. Seto, P. Va, A. Tam, H. Kakei,
T. J. Rayl, I. Hwang and D. L. Boger, J. Am. Chem. Soc., 2009,
131, 4904; (b) T. J. Barker and D. L. Boger, J. Am. Chem. Soc.,
2012, 134, 13588; (c) E. K. Leggans, T. J. Barker, K. K. Duncan
and D. L. Boger, Org. Lett., 2012, 14, 1428.
Data availability
Further details of experimental procedure, characterization and
copies of NMR spectra are provided in the ESI.
7 (a) S. A. Green, J. L. M. Matos, A. Yagi and R. A. Shenvi, J. Am.
´
Chem. Soc., 2016, 138, 12779; (b) S. A. Green, S. Vasquez-
10504 | Chem. Sci., 2021, 12, 10501–10505
© 2021 The Author(s). Published by the Royal Society of Chemistry