with azoles to furnish 1,3-substituted products in acceptable
yields (4m–4o).
6 For excellent reviews, see: (a) D. Alberico, M. E. Scott and
M. Lautens, Chem. Rev., 2007, 107, 174; (b) J. Roger,
A. I. Gottumukkala and H. Doucet, ChemCatChem, 2010, 2, 20.
7 For recent examples, see: (a) B. Liegault, I. Petrov, S. I. Gorelsky
´
and K. Fagnou, J. Org. Chem., 2010, 75, 1047; (b) K. J. Hodgetts
and M. T. Kershaw, Org. Lett., 2003, 5, 2911.
8 (a) S. Pivsa-Art, T. Satoh, Y. Kawamura, M. Miura and
M. Nomura, Bull. Chem. Soc. Jpn., 1998, 71, 467; (b) A. Yokooji,
T. Okazawa, T. Satoh, M. Miura and M. Nomura, Tetrahedron,
2003, 59, 5685.
To gain mechanistic insight of this process, we performed
kinetic isotope effect studies (Scheme S2, ESIw).24 By comparing
the initial rates of benzene to those of benzene-d6, the kH/kD
1
values (by H NMR) were determined to be 2.39 and 3.01 for
thiazole and oxazole, respectively. The kH/kD values
1
(by H NMR) of H/D-azoles were determined to be 1.07 and
9 Y. Kondo, T. Komine and T. Sakamoto, Org. Lett., 2000,
2, 3111.
10 (a) K. Masui, A. Mori, K. Okano, K. Takamura, M. Kinoshita
and T. Iketa, Org. Lett., 2004, 6, 2011; (b) J. Shikuma, A. Mori,
K. Masui, R. Matsuura, A. Sekiguchi, H. Ikegami, M. Kawamoto
and T. Iketa, Chem.–Asian J., 2007, 2, 301.
11 M. Parisien, D. Valette and K. Fagnou, J. Org. Chem., 2005,
70, 7578.
12 G. L. Turner, J. A. Morris and M. F. Greaney, Angew. Chem.,
Int. Ed., 2007, 46, 7996.
13 J. Roger, F. Pozgan and H. Doucet, J. Org. Chem., 2009, 74, 1179.
14 C. Verrier, T. Martin, C. Hoarau and F. Marsias, J. Org. Chem.,
2008, 73, 7383.
15 L. Ackermann, A. Althammer and S. Fenner, Angew. Chem.,
Int. Ed., 2009, 48, 201.
16 For selected examples, see: (a) K. L. Hull and M. S. Sanford,
J. Am. Chem. Soc., 2007, 129, 11904; (b) B.-J. Li, S.-L. Tian,
Z. Fang and Z.-J. Shi, Angew. Chem., Int. Ed., 2008, 47, 1115;
1.16 for thiazole and oxazole, respectively. The results suggest
that the second C–H bond cleavage could be a rate-limiting step
of the reaction. Thus, a plausible mechanism for the direct
arylation of azoles is set out in Scheme S2 (ESIw).24 This process
is initiated by palladation of the azole at C5 to give palladium
intermediate A. In the presence of an unactivated arene, the
C5-palladated species A inserts slowly into the arene, and
reductive elimination produces the arylated product, along with
Pd(0) which is reoxidized by Ag(I) to complete the catalytic cycle.
In summary, we have developed the first Pd(II)-catalyzed
direct C5-arylation of azole-4-carboxylates through double
C–H bond cleavage with good functional group tolerance.
This protocol provides a new avenue for synthesizing various
5-arylated azoles (Scheme S3, ESIw),25 which could serve as
useful building blocks for the synthesis of bioactive molecules.
Preliminary studies of the reaction mechanism were also
investigated. Detailed investigation on the reaction mechanism
and application of this methodology to the synthesis of
complex molecules are undertaken in our laboratory.
(c) G. Brasche, J. Garcıa-Fortanet and S. L. Buchwald, Org. Lett.,
´
2008, 10, 2207; (d) D. R. Stuart and K. Fagnou, Science, 2007,
316, 1172; (e) D. R. Stuart, E. Villemure and K. Fagnou, J. Am.
Chem. Soc., 2007, 129, 12072; (f) T. A. Dwight, N. R. Rue,
D. Charyk, R. Josselyn and B. DeBoef, Org. Lett., 2007, 9, 3137;
(g) S. H. Cho, S. J. Hwang and S. Chang, J. Am. Chem. Soc., 2008,
130, 9254.
This research was supported by State Key Laboratory of
Natural Medicines (JKGZ201110), NSFC-20902111, IRT1193
and Fundamental Research Funds for the Central Universities
(2011BPY001 and JKY2011028 for ZL, JKZ2009002 for HY).
We thank Haipin Zhou in this group for reproducing the
results of 2i, 2l in Table 2, and 4d, 4g in Table 3.
17 For excellent reviews on palladium-catalyzed aryl–aryl bond
formation through double C–H activation, see: (a) C. S. Yeung
and V. M. Dong, Chem. Rev., 2011, 111, 1215; (b) S. L. You and
J. B. Xia, Top. Curr. Chem., 2010, 292, 165; (c) J. A. Ashenhurst,
Chem. Soc. Rev., 2010, 39, 540; (d) G. P. McGlacken and
L. M. Batemann, Chem. Soc. Rev., 2009, 38, 2447; (e) X. Chen,
K. M. Engle, D.-H. Wang and J.-Q. Yu, Angew. Chem., Int. Ed.,
2009, 48, 5094; (f) D. A. Colby, R. G. Bergman and J. A. Ellman,
Chem. Rev., 2009, 109, 1215.
18 (a) Z. Li, L. Ma, C. Tang, J. Xu, X. Wu and H. Yao, Tetrahedron
Lett., 2011, 52, 5643; (b) Z. Li, Y. Wang, Y. Huang, C. Tang,
J. Xu, X. Wu and H. Yao, Tetrahedron, 2011, 67, 5550.
19 The addition of PivOH into the reaction system produced
Pd(OPiv)2, which was proposed to enable efficient C–H palladation.
See recent reviews: (a) L. Ackermann, Chem. Rev., 2011, 111, 1315;
(b) D. Lapointe and K. Fagnou, Chem. Lett., 2010, 1118.
20 See ESIw for detailed optimization.
21 For the synthesis of azole-4-carboxylic derivatives, see (a) Y. Huang,
H. Gan, S. Li, J. Xu, X. Wu and H. Yao, Tetrahedron Lett., 2010,
51, 1751; (b) Y. Huang, L. Ni, H. Gan, Y. He, J. Xu, X. Wu and
H. Yao, Tetrahedron, 2011, 67, 2066; (c) Y. Wang, Z. Li,
Y. Huang, C. Tang, X. Wu, J. Xu and H. Yao, Tetrahedron,
2011, 67, 7406.
22 The arylation of 4-alkyl or 4-hydrogen substituted azoles under
the optimized conditions was proved to be inefficient, resulting
in the formation of the corresponding homocoupling product in
high yield.
Notes and references
1 (a) Z. Jin, Nat. Prod. Rep., 2009, 26, 382; (b) A. C. Gaumont,
M. Gulea and J. Levillain, Chem. Rev., 2009, 109, 1371.
2 (a) H. Aissaoui, C. Boss, R. Koberstein and T. Sifferlen, PCT Int. Appl.,
WO 2009040730, 2009; (b) P. D. Coish, S. J. O’Connor, P. Wickens,
C. Zhang and H. J. Zhang, PCT Int. Appl., WO 2003037332, 2003.
3 A. P. Ducruet, R. L. Rice, K. Tamura, F. Yokokawa, S. Yokokawa,
P. Wipf and J. S. Lazo, Bioorg. Med. Chem., 2000, 8, 1451.
4 For representative examples of C2-arylation of azoles, see
(a) G. Huang, H. Sun, X. Qiu, C. Jin, C. Lin, Y. Shen, J. Jiang
and L. Wang, Org. Lett., 2011, 13, 5224; (b) P. Xi, F. Yang, S. Qin,
D. Zhao, J. Lan, G. Gao, C. Hu and J. You, J. Am. Chem. Soc., 2010,
132, 1822; (c) F. Besselievre, F. Mahuteau-Betzer, D. S. Grierson and
S. Pigel, J. Org. Chem., 2008, 73, 3278; (d) F. Bellina, S. Cauteruccio
and R. Rossi, Eur. J. Org. Chem., 2006, 1379.
5 For representative examples of direct C4-arylation of azoles, see
(a) A. Yokooji, T. Okazawa, T. Satoh, M. Miura and M. Nomura,
Tetrahedron, 2003, 59, 5685; (b) B. Liegault, D. Lapointe,
´
L. Caron, A. Vlassova and K. Fagnou, J. Org. Chem., 2009,
74, 1826; (c) L.-C. Campeau, M. Bertrand-Laperle, J.-P. Leclerc,
E. Villemure, S. Gorelsky and K. Fagnou, J. Am. Chem. Soc.,
2008, 130, 3276; (d) S. Kirchberg, S. Tani, K. Ueda, J. Yamaguchi,
A. Studer and K. Itami, Angew. Chem., Int. Ed., 2011, 50, 2387.
23 See ESIw for details.
24 See ESIw for mechanism studies.
25 Facile derivation of 5-arylated azole-4-carboxylates demonstrated
that our protocol was capable of being applied to the synthesis of
diverse 5-arylated azole-based molecules. See ESIw for details.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3763–3765 3765