6366
S. V. Maifeld et al. / Tetrahedron Letters 43 (2002) 6363–6366
the presence of excess silane (entry 9, 10). Reaction
between an a,b-unsaturated aldehyde such as croton-
aldehyde with allyldimethylsilane yielded a 1.4:1 mix-
ture of trans and cis silyl enol ethers, respectively;
higher reaction temperatures gave rise to the allylic silyl
ether resulting from 1,2-hydrosilylation of the carbonyl.
ner, K. B. Macromolecules 2000, 33, 3196; (c) Drouin, S.
D.; Zamaniun, F.; Fogg, D. E. Organometallics 2001, 20,
5495.
7. (a) Green, W. T.; Wuts, P. G. M. Protecting Groups in
Organic Synthesis, 3rd ed.; John Wiley and Sons: New
York, 1999; (b) Kocienski, P. J. In Protective Groups;
Enders, D.; Noyori, R.; Trost, B. M., Eds.; Thieme:
Stuttgart, 1994.
8. (a) Bols, M.; Skrustrup, T. Chem. Rev. 1995, 95, 1253; (b)
Fensterbank, L.; Malacria, M.; Sieburth, S. McN. Syn-
thesis 1997, 813.
9. For examples of dehydrogenative condensations of alco-
hols and silanes, see: (a) Zhang, C.; Laine, R. M. J. Am.
Chem. Soc. 2000, 122, 6979; (b) Blackwell, J. M.; Foster,
K. L.; Beck, V. H.; Piers, W. E. J. Org. Chem. 1999, 64,
4887 and references cited therein; (c) Ojima, I.; Kogure,
T.; Nihonyangi, M.; Kono, H.; Inaba, S. Chem. Lett.
1973, 501.
In summary, we have demonstrated that Grubbs’ ruthe-
nium carbene complex 1 activates a variety of silanes
affording silyl ethers from dehydrogenative condensa-
tion with alcohols and hydrosilylation of carbonyls.
Current studies in our laboratory are aimed toward
developing this newly discovered reactivity for further
application.
Acknowledgements
10. For examples of carbonyl hydrosilylation, see: (a) Chris-
man, W.; Noson, K.; Lipshutz, B. H. J. Organomet.
Chem. 2001, 624, 367; (b) Parks, D. J.; Blackwell, J. M.;
Pier, W. E. J. Org. Chem. 2000, 65, 3090; (c) Bushell, S.
M.; Lawrence, N. J. Tetrahedron Lett. 2000, 4507; (d)
Lee, S.; Kim, T. Y.; Park, M. K.; Han, B. H. Bull.
Korean Chem. Soc. 1996, 17, 1082; (e) Parks, D. J.; Piers,
W. E. J. Am. Chem. Soc. 1996, 118, 9440; (f) Wang, D.;
Chan, T. H. Tetrahedron Lett. 1993, 34, 3095; (g) Cor-
nish, A. J.; Lappert, M. F.; Filatovs, G. L.; Nile, T. A. J.
Organomet. Chem. 1979, 172, 153.
11. In some cases, a small amount of silyl byproduct was
produced presumably from the dehydrocondensation of
two silanes or the formation of siloxanes. However, for
most cases, filtering the reaction through a short plug of
silica to remove catalyst provides pure silyl ethers.
12. Only a few reports of carbonyl hydrolsilylation catalyzed
by metal–carbene complexes exist in the literature. For
rhodium(I) complexes, see: (a) Hill, J. E.; Nile, T. A. J.
Organomet. Chem. 1977, 137, 293; (b) Herrmann, W. A.;
Goosen, L. J.; Kocher, C.; Artus, C. R. Angew. Chem.,
Int. Ed. 1996, 35, 2805; (c) Enders, D.; Gielen, H. J.
Organomet. Chem. 2001, 617–618, 70; (d) For rhodium(I)
and ruthenium(II), see: Haskell, R. K.; Lappert, M. F. J.
Organomet. Chem. 1984, 264, 217.
D.L. gratefully acknowledges UW-Madison and the
Dreyfus Foundation for financial support. R.L.M.
thanks NIH for the support via a Chemistry and Biol-
ogy Interface Training Grant (T32 GM08505). NSF
and NIH support for NMR and Mass Spectrometry
instrumentation are greatly acknowledged.
References
1. For recent reviews, see: (a) Grubbs, R. H.; Chang, S.
Tetrahedron 1998, 54, 4413; (b) Armstrong, S. K. J.
Chem. Soc., Perkin Trans. 1 1998, 371; (c) Blechert, S.
Pure Appl. Chem. 1999, 71, 1393; (d) Furstner, A. Angew.
Chem., Int. Ed. 2000, 39, 3013.
2. Tallarico, J. A.; Malnick, L. M.; Snapper, M. L. J. Org.
Chem. 1999, 64, 344.
3. Alcaide, B.; Almendros, P.; Alonson, J. M.; Aly, M. F.
Org. Lett. 2001, 3, 3781.
4. Simal, F.; Demonceau, A.; Noels, A. F. Angew. Chem.,
Int. Ed. 1999, 38, 538.
5. Bielawski, C. W.; Louie, J.; Grubbs, R. H. J. Am. Chem.
Soc. 2000, 122, 12872.
6. (a) Louie, J.; Bielawski, C. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2001, 123, 11312; (b) Watson, M. D.; Wag-