N2C ligation from a second Li4[L4] unit (analogous to K–imine
bonding in 2). Unlike 2, the structure is further complicated by
the presence of the second Li environment, Li1, which
coordinates to both amido-N2 and pyrrolide-N1, and to amido-
N2A of a second monomer, so generating the circular ladder.
This ladder has a pronounced and unusual twist,9 (Fig. 2c)
which results in distorted pyramidal Li1 (S N–Li–N = 318.2,
cf. Li2 S = 349.8°) and rhombohedral Li1–N2–Li1a–N2a
[internal angles = 104.9 and 69.6°, Li1–N2 2.074(4), Li–N2A
2.002(4) Å], and is a likely consequence of amido-arm
geometrical constraint. Li-amide circular ladders that are
derived from monodeprotonated amines, e.g. [LiN(H)But]8,10
usually form by straightforward edge-to-edge LiN ring associa-
tion between dimeric units. However, with the tetradeproto-
nated tetraamine 3b, the formation of simple LiN repeating
units in the monomer is precluded, and results instead in a
laterally-shifted LiN chain (Fig. 3). The combination of three of
these chains, coupled with cyclisation would result in the
observed structure. Like other LiN ladders, 3b contains
approximately alternating long–short edge bonds with an
intermediate rung length.11
Fig. 3 Possible mechanism for the formation of 3b.
We thank the Royal Society (J.B.L., University Research
Fellowship), the University of Nottingham, the EPSRC
(S.D.R.), and the Nuffield Foundation (A.N., Undergraduate
Research Bursary) for support.
Notes and references
b303611a/ for crystallographic data in .cif format.
1 T. Dubé, S. Conoci, S. Gambarotta and G. P. A. Yap, Organometallics,
2000, 19, 1182; G. Aharonian, S. Gambarotta and G. P. A. Yap,
Organometallics, 2002, 21, 4257; Y. Shi, C. Hall, J. T. Ciszewski, C.
Cao and A. L. Odom, Chem. Commun., 2003, 586.
2 A. Novak, A. J. Blake, C. Wilson and J. B. Love, Chem. Commun.,
2002, 2796.
3 M. Ganesan, S. Gambarotta and G. P. A. Yap, Angew. Chem., Int. Ed.,
2001, 40, 766.
4 A. Jasat and D. Dolphin, Chem. Rev., 1997, 97, 2267.
5 F. Antolini, P. B. Hitchcock, M. F. Lappert and P. Merle, Chem.
Commun., 2000, 1301; K. Gregory, P. von Ragué Schleyer and R.
Snaith, Adv. Inorg. Chem., 1991, 37, 47; R. E. Mulvey, Chem. Soc. Rev.,
1991, 20, 167.
Fig. 2 The X-ray crystal structure of 3b [50% ellipsoids].
6 J. Guan, T. Dubé, S. Gambarotta and G. P. A. Yap, Organometallics,
2000, 19, 4820; M. Ganesan, C. D. Bérubé, S. Gambarotta and G. P. A.
Yap, Organometallics, 2002, 21, 1707; C. Floriani, E. Solari, G. Solari,
A. Chiesi-Villa and C. Rizzoli, Angew. Chem., Int. Ed., 1998, 37,
2245.
7 L. Bonomo, E. Solari, R. Scopelliti and C. Floriani, Chem. Eur. J., 2001,
7, 1322.
8 M. L. Cole, C. Jones and P. C. Junk, J. Chem. Soc., Dalton Trans., 2002,
896; W. J. Evans, J. C. Brady, C. H. Fujimoto, D. G. Giarikos and J. W.
Ziller, J. Organomet. Chem., 2002, 649, 252.
9 A. R. Kennedy, R. E. Mulvey and A. Robertson, Chem. Commun., 1998,
89; N. Kuhn, G. Henkel and J. Kreutzberg, Angew. Chem., Int. Ed.,
1990, 29, 1143.
10 N. D. R. Barnett, W. Clegg, L. Horsburgh, D. M. Lindsay, Q.-Y. Liu, F.
M. Mackenzie, R. E. Mulvey and P. G. Williard, Chem. Commun., 1996,
2321.
for 3a and 3b are very similar and are consistent with both
complete deprotonation of the aminopyrrole ligand H4[L4] and
the formation of complexes that contain two distinct lithium
environments [e.g. 3b: dLi 0.08 (br s), 27.65 (br s)]. The
simplicity of the NMR data for 3b is consistent with, but not
reflected by, the X-ray structure (Fig. 2), where it is im-
mediately apparent that a remarkable structural aggregation has
occurred to maximise electrostatic interactions between the Li
ions and N-donors. In the solid state, 3b exists as three
interlocked Li4[L4] units, the core of which is a unique 12-rung
lithium amide circular ladder (Fig. 2c) which is delimited by a
helical ligand periphery (Fig. 2b). As with 2, the dipyrrolide
moiety adopts alternating s-N/p-C4H2N bonding to Li2 (and
Li2B); the coordination sphere of Li2 is completed by amido-
11 R. E. Mulvey, Chem. Soc. Rev., 1998, 27, 339.
CHEM. COMMUN., 2003, 1682–1683
1683