Published on Web 11/01/2003
Universal NMR Databases for Contiguous Polyols
Shuhei Higashibayashi, Werngard Czechtizky, Yoshihisa Kobayashi, and
Yoshito Kishi*
Contribution from the Department of Chemistry and Chemical Biology, HarVard UniVersity,
12 Oxford Street, Cambridge, Massachusetts 02138
Received July 25, 2003; E-mail: kishi@chemistry.harvard.edu
Abstract: On the basis of 1,2,3-triols 1a∼d, 1,2,3,4-tetraols 2a∼h, and 1,2,3,4,5-pentaols 3a∼p, NMR
databases with four types of profile-descriptors (13C-, 1H-, and 1H(OH)-chemical shifts and vicinal spin-
coupling constants) for contiguous polyols are reported. To systematically assess the relative values of
these databases, a case study has been conducted on heptaols 4a∼d, through which the γ- and δ-effects
1
have been recognized to refine the 13C and H chemical shift profile predicted via an application of the
concept of self-contained nature. The magnitudes of γ- and δ-effects depend on a specific stereochemical
arrangement of the functional groups present in both the inside and outside of a self-contained box and
are significant only for the stereoisomers belonging to a specific sub-group. With the exception of the
stereochemical arrangement of functional groups belonging to a specific sub-group, the γ- and δ-effects
can, at the first order of approximation, be ignored for the stereochemical analysis of unknown compounds.
For the stereoisomers belonging to a specific sub-group, it is necessary to refine, with incorporation of the
γ- and δ-effects, the profile predicted at the first order of approximation. With use of heptaols 4a∼d, the
values of 3JH,H profiles have been assessed. Two methods, one using profiles consisting of three contiguous
3
3JH,H constants and the other using profiles consisting of two contiguous JH,H constants, have been
3
developed. A stereochemical analysis based on three, or two, contiguous JH,H profiles is operationally
simpler than one based on 13C and 1H chemical shift profiles. Therefore, it is recommended to use a 3JH,H
1
profile as the primary device to predict the stereochemistry of unknown polyols and 13C and H chemical
shift profiles as the secondary devices to confirm the predicted stereochemistry.
Introduction
stereochemical arrangement of the small substituents on the
carbon backbone and are independent from the rest of the
Through the work on palytoxins,1,2 AAL toxin/fumonisin,3,4
and maitotoxin,5,6 we have experimentally demonstrated the
following: (1) the spectroscopic profiles of the stereoclusters
present in these natural products are inherent to the specific
molecules, and (2) steric and stereoelectronic interactions
between structural clusters connected either directly or with a
one-methylene bridged are significant and interactions between
stereoclusters connected with a two- or more-methylene bridge
are negligible. On the basis of these experimental discoveries,
we have advanced the logic of a universal NMR database
approach for assignment of the relative and absolute configu-
ration of (acyclic) compounds. Using the 13C chemical shift
profiles as the primary means, we have demonstrated the
feasibility and reliability of this approach, which has culminated
in the complete stereochemical assignment of the desertomycin/
oasomycin class of antibiotics,7 mycolactone,8 and tetrafibricin.9
(1) (a) Cha, J. K.; Christ, W. J.; Finan, J. M.; Fujioka, H.; Kishi, Y.; Klein. L.
L.; Ko, S. S.; Leder, J.; McWhorter, W. W., Jr.; Pfaff, K.-P.; Yonaga, M.;
Uemura, D.; Hirata, Y. J. Am. Chem Soc. 1982, 104, 7369-7371 and the
preceding papers. (b) Kishi, Y. Curr. Trends Org. Synth. (IUPAC) 1983,
115-130.
(2) For the stereochemical assignment primarily based on spectroscopic
methods, see: Moore, R. E.; Bartolini, G.; Barchi, J.; Bothner-By, A. A.;
Dadok, J.; Ford, J. J. Am. Chem. Soc. 1982, 104, 3776-3779.
(3) For the stereochemical assignment of AAL toxins and fumonisins from
this laboratory, see: (a) Boyle, C. D.; Harmange, J.-C.; Kishi, Y. J. Am.
Chem. Soc. 1994, 116, 4995-4996. (b) Boyle, C. D.; Kishi, Y. Tetrahedron
Lett. 1995, 36, 5695-5698, and references therein.
(4) For the work from other laboratories, see: (c) Oikawa, H.; Matsuda, I.;
Kagawa, T.; Ichihara, A.; Kohmoto, K. Tetrahedron 1994, 50, 13 347-
13 368. (d) Hoye, T. R.; Jime´nez, J. I.; Shier, W. T. J. Am. Chem. Soc.
1994, 116, 9409-9410. (e) ApSimon, J. W.; Blackwell, B. A.; Edwards,
O. E.; Fruchier, A. Tetrahedron Lett. 1994, 35, 7703-7706. (f) Poch, G.
K.; Powell, R. G.; Plattner, R. D.; Weisleder, D. Tetrahedron Lett. 1994,
35, 7707-7710. (g) Blackwell, B. A.; Edwards, O. E.; ApSimon, J. W.;
Fruchier, A. Tetrahedron Lett. 1995, 36, 1973-1976.
(7) (a) Lee, J.; Kobayashi, Y.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2177-
2180. (b) Kobayashi, Y.; Lee, J.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1,
2181-2184. (c) Kobayashi, Y.; Tan, C.-H.; Kishi, Y. HelV. Chim. Acta
2000, 83, 2562-2571. (d) Kobayashi, Y.; Tan. C.-H.; Kishi, Y. Angew.
Chem., Int. Ed. 2000, 39, 4279-4281. (e) Tan. C.-H.; Kobayashi, Y.; Kishi,
Y. Angew. Chem., Int. Ed. 2000, 39, 4282-4284. (f) Kobayashi, Y.;
Hayashi, N.; Tan. C.-H.; Kishi, Y. Org. Lett. 2001, 3, 2245-2248. (g)
Hayashi, N.; Kobayashi, Y.; Kishi, Y. Org. Lett. 2001, 3, 2249-2252. (h)
Kobayashi, Y.; Hayashi, N.; Kishi, Y. Org. Lett. 2001, 3, 2253-2255. (i)
Kobayashi, Y.; Tan. C.-H.; Kishi, Y. J. Am. Chem. Soc. 2001, 123, 2076-
2078. (j) Kobayashi, Y.; Hayashi, N.; Kishi, Y. Org. Lett. 2002, 4, 411-
414.
(5) For the work from this laboratory, see: (a) Zheng, W.; DeMattei, J. A.;
Wu, J.-P.; Duan, J. J.-W.; Cook, L. R.; Oinuma, H.; Kishi, Y. J. Am. Chem.
Soc. 1996, 118, 7946-7968. (b) Cook, L. R.; Oinuma, H.; Semones, M.
A.; Kishi, Y. J. Am. Chem. Soc. 1997, 119, 7928-7937.
(6) For the work from the laboratories at Tokyo and Tohoku Universities, see:
(c) Sasaki, M.; Matsumori, N.; Maruyama, T.; Nonomura, T.; Murata, M.;
Tachibana, K.; Yasumoto, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1672-
1675. (d) Nonomura, T.; Sasaki, M.; Matsumori, N.; Murata, M.; Tachibana,
K.; Yasumoto, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1675-1678.
(8) (a) Benowitz, A. B.; Fidanze, S.; Small, P. L.; Kishi, Y. J. Am. Chem. Soc.
2001, 123, 5128-5129. (b) Fidanze, S.; Song, F.; Szlosek-Pinaud, M.;
Small, P. L.; Kishi, Y. J. Am. Chem. Soc. 2001, 123, 10 117-10 118.
(9) Kobayashi, Y.; Czechtizky, W.; Kishi, Y. Org. Lett. 2003, 5, 93-96.
9
10.1021/ja0375481 CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 14379-14393
14379