336
C. Gravier-Pelletier et al.
LETTER
(4) (a) Shapiro, J. A.; Seaton, T. B. Arch. Inter. Med. 1994, 154,
2442. (b) Cheng, X. M. In Annu. Rep. Med. Chem., Vol. 30;
Bristol, J. A., Ed.; Academic Press: San Diego, 1995, 313.
(c) Gaudillière, B. In Annu. Rep. Med. Chem., Vol. 34;
Doherty, A. M., Ed.; Academic Press: San Diego, 1999, 325.
(5) (a) Carbohydrate Mimics, Concepts and Methods; Chapleur,
Y., Ed.; Wiley-VCH: New York, 1998. (b) Watson, A. A.;
Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J.
Phytochemistry 2001, 56, 265. (c) Kleban, M.; Hilgers, P.;
Greul, J. N.; Kugler, R. D.; Li, J.; Picasso, S.; Vogel, P.;
Jäger, V. ChemBioChem. 2001, 5, 365.
(6) Iminosugars as Glycosidases Inhibitors: Nojirimycin and
Beyond; Stütz, A. E., Ed.; Wiley-VCH: New York, 1999.
(7) Le Merrer, Y.; Gravier-Pelletier, C.; Maton, W.; Numa, M.;
Depezay, J. C. Synlett 1999, 1322.
(8) Satisfactory analytical and/or spectroscopic data were
obtained for all new compounds.
the residue afforded the indolizidine or quinolizidine analog
in yield ranging from 50% to 75% according to the
ketoaldehyde and to the primary amine involved.
Selected physical data for compounds 15, 16a and 16b
([α]D20 in CH2Cl2 1H NMR [250 MHz unless indicated, δ
(ppm), J (Hz) and 13C NMR (62.5 MHz, δ(ppm)] in CDCl3.
Hydrogen and carbon atoms of the heterocycle have been
numbered according to the IUPAC nomenclature rules, and
for the N-side chain by A, B and C:
15: [α]D20 +24.5 (c 1.1). 1H NMR (500 MHz): δ = 3.89 (ddd,
1 H, J6,7′ = 9.5 Hz, J6,5 = 9.2 Hz, J6,7 = 5.0 Hz, H6), 3.75 (dd,
1 H, JA,A′ = 10.4 Hz, JA,B = 6.2 Hz, HA), 3.72 (dd, 1 H,
JA′,A = 10.4 Hz, JA′,B = 5.0 Hz, HA′), 3.60 (dd, 1 H,
JC,C′ = 10.0 Hz, JC,B = 5.9 Hz, HC), 3.57 (dd, 1 H, JC′,C = 10.0
Hz, JC′,B = 6.4 Hz, HC′), 3.44 (dd, 1 H, J4,3a = 10.0 Hz,
J4,5 = 9.2 Hz, H4), 3.36 (ddd, J7a,3a = J7a,7′ = 4.4 Hz, J7a,7 = 2.9
Hz, 1 H, H7a), 3.26 (dd, 1 H, J5,6 = J5,4 = 9.2 Hz, H5), 2.97–
2.87 (m, 2 H, HB,2′), 2.83 (ddd, 1 H, J2,2′ = 14.8 Hz, J2,3′ = 9.4
Hz, J2,3 = 5.6 Hz, H2), 2.15 (ddd, 1 H, J7,7′ = 14.2 Hz,
(9) Gravier-Pelletier, C.; Maton, W.; Lecourt, T.; Le Merrer, Y.
Tetrahedron Lett. 2001, 42, 4475.
(10) Shimizu, S.; Nakamura, S.; Nakada, M.; Shibasaki, M.
Tetrahedron 1996, 42, 13363.
(11) Harmon, R. E.; Parsons, J. L.; Cooke, D. W.; Gupta, S. K.;
Schoolenberg, J. J. Org. Chem. 1969, 11, 3684.
(12) In this case, an unexpected lactone, resulting from double
bond reduction followed by transketalization and subsequent
lactonization, was isolated in a non-reproducible 63% yield
(Figure 3).
J
7,6 = 5.0 Hz, J7,7a = 2.9 Hz, H7), 2.13–2.06 (m, 1 H, H3a),
1.86–1.73 (m, 2 H, H3,3′), 1.42 (ddd, 1 H, J7′,7 = 14.2 Hz,
J7′,6 = 9.5 Hz, J7′,7a = 4.4 Hz, H7′), 1.38, 1.36 (2 s, 6 H,
CMe2), 0.88 (s, 27 H, t-Bu), 0.05 (s, 18 H, SiMe2). 13C NMR:
δ = 109.1 (CMe2), 83.9 (C5), 79.1 (C4), 69.4 (C6), 63.3, 59.3
(CA,C), 60.7, 59.4 (C7a,B), 44.9 (C2), 41.9 (C3a), 35.3 (C7),
29.7 (C3), 27.0 (CMe2), 25.9, 18.3, 18.2 (t-Bu), –4.5, –4.8,
–5.4 (SiMe2). HRMS (CI, CH4) calcd for C32H68NO5Si3 [M+
+ 1]: 630.4405. Found: 630.4393.
16a: [α]D20 +14 (c 1.0). 1H NMR: δ = 4.12 (dd, 1 H,
J5,4a = 11.1 Hz, J5,6 = 9.1 Hz, H5), 3.95 (ddd, 1 H, J7,8 = 11.0
Hz, J7,6 = 9.0 Hz, J7,8′ = 3.8 Hz, H7), 3.72 (dd, 1 H,
JA′,A = 10.3 Hz, JA′,B = 6.9 Hz, HA′), 3.56 (dd, 1 H,
OH
O
O
OTBDMS
JA,A′ = 10.3 Hz, JA,B = 4.6 Hz, HA), 3.60–3.49 (m, 2 H, HC,C′),
S
S
3.24 (dd, 1 H, J6,7 = J6,5 = 9.0 Hz, H6), 3.20–3.10 (m, 1 H,
HB), 3.06 (ddd, 1 H, J8a,4a = J8a,8 = J8a,8′ = ca. 3.2 Hz, H8a),
2.93–2.77 (m, 1 H, H2), 2.39 (ddd, 1 H, J8,8′ = 14.7 Hz,
J8,7 = J8,8a = 3.2 Hz, H8), 2.26 (ddd, 1 H, J2′,2 = J2′,3′ = 11.5
Hz, J2′,3 = 1.9 Hz, H2′), 2.04–1.85 (m, 1 H, H4), 1.81–1.53
(m, 3 H, H4a,3,3′), 1.52–1.40 (m, 1 H, H4′), 1.38 (s, 6 H,
CMe2), 1.40–1.34 (m, 1 H, H8′), 0.88, 0.87 (2 s, 27 H, t-Bu),
0.09, 0.08, 0.06, 0.04, 0.02 (s, 18 H, SiMe2). 13C NMR: δ =
108.7 (CMe2), 85.4 (C6), 74.9 (C5), 68.6 (C7), 62.9 (CA), 59.8
(CB), 59.4 (CC), 58.8 (C8a), 47.8 (C2), 40.0 (C4a), 37.5 (C8),
30.2 (C3), 27.1, 26.9 (CMe2), 25.9, 18.2 (t-Bu), 22.0 (C4),
–4.4, –4.7, –5.4, –5.6 (SiMe2). HRMS (CI, CH4) calcd for
C33H70NO5Si3 [M+ + 1]: 644.4562. Found: 644.4556.
16b: [α]Hg, 36520 +5 (c 1.0). 1H NMR: δ = 3.75 (dd, 1 H,
Figure 3
(13) Suenaga, K.; Araki, K.; Sengoku, T.; Uemura, D. Org. Lett.
2001, 4, 527.
(14) Chiu, P.; Szeto, C. P.; Geng, Z.; Cheng, K. F. Tetrahedron
Lett. 2001, 42, 4091.
(15) (a) Dzierba, C. D.; Zandi, K. S.; Moellers, T.; Shea, K. J. J.
Am. Chem. Soc. 1996, 118, 4711. (b) Hudlicky, T.; Sinai-
Zingde, G.; Natchus, M. G. Tetrahedron Lett. 1987, 28,
5287.
(16) Azami, H.; Barrett, D.; Matsuda, K.; Tsutsumi, H.;
Washizuka, K.; Sakurai, M.; Kuroda, S.; Shirai, F.; Chiba,
T.; Kamimura, T.; Murata, M. Bioorg. Med. Chem. 1999, 7,
1665.
JA′,A = 10.4 Hz, JA′,B = 8.2 Hz, HA′), 3.71 (dd, 1 H,
JA,A′ = 10.4 Hz, JA,B = 4.6 Hz, HA), 3.81–3.66 (m, 1 H, H7),
3.59 (dd, 1 H, JC,C′ = 10.0 Hz, JC,B = 5.3 Hz, HC), 3.53 (dd, 1
H, JC′,C = 10.0 Hz, JC′,B = 7.4 Hz, HC′), 3.32 (dd, 1 H,
(17) Magnus, P.; Gallagher, T.; Brown, P.; Huffman, J. C. J. Am.
Chem. Soc. 1984, 106, 2105.
J6,7 = J6,5 = 9.1 Hz, H6), 3.27–3.14 (m, 1 H, HB), 2.97 (dd, 1
(18) Manescalchi, F.; Nardi, A. R.; Savoia, D. Tetrahedron Lett.
1994, 35, 2775.
H, J5,6 = 10.8 Hz, J5,4a = 9.1 Hz, H5), 2.91–2.80 (m, 1 H, H2),
2.48 (ddd, 1 H, J8a,4a = 12.8 Hz, J8a,8′ = 9.0 Hz, J8a,8 = 4.0 Hz,
H8a), 2.45–2.31 (m, 2 H, H2′,8), 2.04–1.90 (m, 1 H, H4), 1.69–
1.54 (m, 1 H, H3), 1.50–1.39 (m, 2 H, H4a,3′), 1.37, 1.36 (2 s,
6 H, CMe2), 1.31–1.20 (m, 1 H, H8′), 1.07–0.93 (m, 1 H, H4′),
0.88, 0.87 (2 s, 27 H, t-Bu), 0.08, 0.07, 0.03, 0.02 (s, 18 H,
SiMe2). 13C NMR: δ = 111.3 (CMe2), 84.2 (C6), 79.9 (C5),
70.3 (C7), 64.2 (CA), 61.4 (CB), 60.6 (CC), 59.2 (C8a), 48.1
(C2), 44.5 (C4a), 38.6 (C8), 28.5 (C3), 27.0 (CMe2), 25.9, 18.2
(t-Bu), 25.6 (C4), –4.4, –4.9, –5.3, –5.4, –5.6 (SiMe2).
HRMS (CI, CH4) calcd for C33H70NO5Si3 [M+ + 1]:
644.4562. Found: 644.4570.
(19) Typical Procedure for the Double Reductive Amination:
To a solution of ketoaldehyde 8 or 12 (387 µmol) in
methanol (1 mL), at 0 °C, were successively added sodium
cyanoborohydride (753 µmol, 1.9 equiv) and a mixture of
primary amine (387 µmol, 1 equiv) and HOAc (387 µmol, 1
equiv) in MeOH (400 µL). After 24 h stirring at 20 °C and
concentration in vacuo, a 10% aq solution of NaOH was
added and the mixture was extracted with CH2Cl2. The
combined organic layers were dried (anhyd Na2SO4),
filtered and concentrated in vacuo. Flash chromatography of
Synlett 2003, No. 3, 333–336 ISSN 0936-5214 © Thieme Stuttgart · New York