2012
O. Baudoin et al.
LETTER
(6) Meyers, A. I.; Flisak, J. R.; Aitken, R. A. J. Am. Chem. Soc.
1987, 109, 5446.
(7) (a) Uemura, M.; Daimon, A.; Hayashi, Y. J. Chem. Soc.,
Chem. Commun. 1995, 1943. (b) Monovich, L. G.; Le
Huérou, Y.; Rönn, M.; Molander, G. A. J. Am. Chem. Soc.
2000, 122, 52.
(8) Nicolaou, K. C.; Li, H.; Boddy, C. N. C.; Ramanjulu, J. M.;
Yue, T.-Y.; Natarajan, S.; Chu, X.-J.; Bräse, S.; Rübsam, F.
Chem. Eur. J. 1999, 5, 2584.
(9) (a) Cammidge, A. N.; Crépy, K. V. L. Chem. Commun.
2000, 1723. (b) Yin, J.; Buchwald, S. J. Am. Chem. Soc.
2000, 122, 12051. (c) Herrbach, A.; Marinetti, A.; Baudoin,
O.; Guénard, D.; Guéritte, F. J. Org. Chem. 2003, 68, 4897.
(10) Lipshutz, B. H.; Keith, J. M. Angew. Chem. Int. Ed. 1999,
38, 3530.
C and, after isomerization to the cis complex and reduc-
tive elimination, biphenyls 2a–c having the (R, aS) rela-
tive configuration. The transmetalation of B in the
opposite orientation, i.e. with the C-16 substituent in the
same face as the C-20 methyl group, which would furnish
2a–c with the (R, aR) relative configuration, should be
disfavored. This model accounts in particular for the bet-
ter diastereoselectivity observed with boronate 12 having
a bulkier protecting group than 11.
(11) Nicolaou, K. C.; Natarajan, S.; Li, H.; Jain, N. F.; Hughes,
R.; Solomon, M. E.; Ramanjulu, J. M.; Boddy, C. N. C.;
Takayanagi, M. Angew. Chem. Int. Ed. 1998, 37, 2708.
(12) (a) Baudoin, O.; Cesario, M.; Guénard, D.; Guéritte, F. J.
Org. Chem. 2002, 67, 1199. (b) Baudoin, O.; Claveau, F.;
Thoret, S.; Herrbach, A.; Guénard, D.; Guéritte, F. Bioorg.
Med. Chem. 2002, 10, 3395.
(13) Ziegler, F. E.; Schwartz, J. A. J. Org. Chem. 1978, 43, 985.
(14) Wilson, C. V.; Janssen, D. E. Org. Synth., Coll. Vol. IV;
Wiley: New York, 1963, 547.
(15) Baudoin, O.; Guénard, D.; Guéritte, F. J. Org. Chem. 2000,
65, 9268.
(16) (a) Wolfe, J. P.; Buchwald, S. L. Angew. Chem. Int. Ed.
1999, 38, 2413. (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.;
Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550.
(17) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc.
1987, 109, 5551.
Figure 2 Proposed stereochemical course of the Suzuki coupling
In conclusion, a novel atropo-diastereoselective Suzuki
coupling has been discovered in the synthesis of biaryl
lignans. In this process, a 1,3-chirality induction was per-
formed from an oxygen-bearing benzylic stereogenic cen-
ter to the biaryl axis. This benzylic stereocenter was in
turn generated by a catalytic enantioselective reduction.
Therefore, this methodology provides a unique catalytic
asymmetric access to axially chiral molecules having a
benzylic stereocenter. The elaboration of stegane-type
dibenzocyclooctadiene lignans using these findings will
be reported in due course.
(18) (+)-3: [a]D23 +38.8 (c 1.1, CHCl3); HPLC (Chiracel OD,
hexane–EtOH, 95:5, 1.0 mL/min) tR 7.8 min (minor
enantiomer), 9.2 min (major enantiomer).
(19) Hashiguchi, S.; Fujii, A.; Haack, K.-J.; Matsumura, K.;
Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997,
36, 288.
(20) Compound (–)-2d: mp 70 °C; [a]D24 –21.4 (c 1.0, CHCl3);
HPLC (C18 Symmetry column, H2O–CH3CN, 35:65, 1.0
mL/min) tR 16.6 min (diastereoisomer 1, 4%), 17.9 min
(diastereoisomer 2, 96%); HPLC (Chiralpak AD, heptane–i-
PrOH, 98:2, 1.0 mL/min) diastereoisomer 2: tR 10.8 min
(enantiomer 1, 5%), 24.5 min (enantiomer 2, 95%),
diastereoisomer 1: tR 11.4 min (enantiomer 1, 95%), 13.0
min (enantiomer 2, 5%). 1H NMR [300 MHz, (CD3)2CO]
d = 1.15 (d, J = 6.3 Hz, 3 H), 3.23 (s, 3 H), 3.61 (s, 3 H), 3.74
(s, 3 H), 3.89 (s, 3 H), 4.15 (d, J = 12.0 Hz, 1 H), 4.21 (d,
J = 12.0 Hz, 1 H), 4.25 (q, J = 6.5 Hz, 1 H), 4.33 (d, J = 12.3
Hz, 1 H), 4.45 (d, J = 12.3 Hz, 1 H), 4.57 (s, 2 H), 6.04 (s,
1H), 6.06 (s, 1 H), 6.63 (s, 1 H), 6.98 (s, 1 H), 7.12 (s, 1 H),
7.20–7.32 (m, 5 H) (major diastereoisomer). 13C NMR [75.5
MHz, (CD3)2CO] d = 23.9, 55.3, 56.2, 60.9, 61.0, 67.7, 70.8,
74.9, 96.7, 102.1, 105.9, 108.7, 111.0, 126.6, 127.7, 127.9,
128.5, 128.9, 133.5, 138.4, 140.7, 142.5, 147.2, 148.6,
151.2, 154.1 (major diastereoisomer). HRMS (ESI): m/z for
[(M + Na)+] calcd for C28H32NaO8: 519.1995; found:
519.1982.
Acknowledgment
We thank M.-T. Adeline and B. Dumontet for HPLC analyses and
Dr. M.-T. Martin for NMR experiments. This work was financially
supported by the Centre National de la Recherche Scientifique
(CNRS).
References
(1) Bringmann, G.; Günther, G.; Ochse, M.; Schupp, O.; Tasler,
S. In Progress in the Chemistry of Natural Products, Vol.
82; Herz, W.; Falk, H.; Kirby, G. W.; Moore, R. E.; Tamm,
C., Eds.; Springer-Verlag: New York, 2001.
(2) Lloyd-Williams, P.; Giralt, E. Chem. Soc. Rev. 2001, 30,
145.
(3) Ayres, D. C.; Loike, J. D. In Chemistry and Pharmacology
of Natural Products, Lignans: Chemical, Biological and
Clinical Properties; Phillipson, J. D.; Ayres, D. C.; Baxter,
H., Eds.; Cambridge University Press: Cambridge, 1990.
(4) Tomioka, K.; Ishiguro, T.; Iitaka, Y.; Koga, K. Tetrahedron
1984, 40, 1303.
(21) Crystallographic data for 2d have been deposited with the
Cambridge Crystallographic Data Center under number
CCDC-203288.
(22) For related examples: (a) Munoz, M. P.; Martin-Matute, B.;
Fernandez-Rivas, C.; Cardenas, D. J.; Echavarren, A. M.
Adv. Synth. Cat. 2001, 343, 338. (b) Fernandez-Rivas, C.;
Cardenas, D. J.; Martin-Matute, B.; Monge, A.; Gutierrez-
Puebla, E.; Echavarren, A. M. Organometallics 2001, 20,
2998.
(5) Robin, J. P.; Gringore, O.; Brown, E. Tetrahedron Lett.
1980, 21, 2709.
Synlett 2003, No. 13, 2009–2012 © Thieme Stuttgart · New York