2180
E. Ramirez et al. / Tetrahedron Letters 51 (2010) 2178–2180
2. (a) Kolodiazhnyi, O. I. Phosphorus Ylides: Chemistry and Applications in Organic
OH
H
O
H
Ph
Ph
Ph
O
OH
H
Chemistry; Wiley-VCH: New York, 1999; (b) Takeda, T. In Modern Carbonyl
Olefination; Wiley-VCH: Weinheim, Germany, 2004.
R
O
P
O
O
Ph
O
R
P
3. (a) Guo, X.; Wang, J.; Li, C.-H. J. Am. Chem. Soc. 2009, 131, 15092–15093; (b)
Nicolaou, K. C.; Härter, M. W.; Gunzner, J. L.; Nadin, A. Liebigs Ann. Recl. 1997,
1283–1301; (c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927; (d)
Vedejs, E.; Peterson, M. J. Top. Stereochem. 1994, 21, 1–57; (e) Walker, B. J.
Organophosphorus Chem. 1996, 27, 264–307.
H
Ph
O
O
Ph
Bb
(0.00 kcal/mol)
Bc
(6.13 kcal/mol)
Relative Energies in parenthesis
4. (a) El-Batta, A. M.; Jiang, C.; Zhao, W.; Anness, R.; Cooksy, A. L.; Bergdahl, M. J.
Org. Chem. 2007, 72, 5244–5259; (b) Dambacher, J.; Zhao, W.; El-Batta, A.;
Anness, R.; Jiang, C.; Bergdahl, M. Tetrahedron Lett. 2005, 46, 4473–4477.
5. Fodor, G.; Tömösközi, I. Tetrahedron Lett. 1961, 2, 579–582.
Ph
P
O
H
R
H
H
R
Ph
Ph
Ph
OH
O
OH
O
P
Ph
O
H
Ph
6. (a) Nonnenmacher, A.; Mayer, R.; Plieninger, H. Liebigs Ann. Chem. 1983, 2135–
2140; (b) Isaacs, N. S.; El-Din, G. N. Tetrahedron Lett. 1987, 28, 2191–2192.
7. Patil, V. J.; Mävers, U. Tetrahedron Lett. 1996, 37, 1281–1284.
8. (a) House, H. O.; Jones, V. K.; Frank, G. A. J. Org. Chem. 1964, 29, 3327–3333; (b)
Fliszár, S.; Hudson, R. F.; Salvadori, G. Helv. Chim. Acta 1964, 47, 159–162; (c)
Rüchardt, C.; Panse, P.; Eichler, S. Chem. Ber. 1967, 100, 1144–1164; (d) Corey, E.
J.; Clark, D. A.; Goto, G.; Marfat, A.; Mioskowski, C.; Samuelsson, B.;
Hammarström, S. J. Am. Chem. Soc. 1980, 102, 1436–1439; (e) Marriott, D. P.;
Bantick, J. R. Tetrahedron Lett. 1981, 22, 3657–3658; (f) Stafford, J. A.; McMurry,
J. E. Tetrahedron Lett. 1988, 29, 2531–2534; (g) Westman, G.; Wennerström, O.;
Raston, I. Tetrahedron 1993, 49, 483–488; (h) Hooper, D. L.; Garagan, S.; Kayser,
M. M. J. Org. Chem. 1994, 59, 1126–1128; (i) Thiemann, T.; Thiemann, C.; Sasaki,
S.; Vill, V.; Mataka, S.; Tashiro, M. J. Chem. Res. Synop. 1997, 248–249.
9. Boulaire, V. L.; Grée, R. Chem. Commun. 2000, 2195–2196.
10. Harcken, C.; Martin, S. F. Org. Lett. 2001, 3, 3591–3593.
11. Sartillo-Piscil, F.; Vargas, M.; Anaya de Parrodi, C.; Quintero, L. Tetrahedron Lett.
2003, 44, 3919–3921.
12. Dr. Shaw has also used the term SHOWO for the same synthetic purpose:
Reddy, L. V. R.; Reddy, P. V.; Shaw, A. K. Tetrahedron: Asymmetry 2007, 18, 542–
546.
13. (a) Gesson, J. P.; Jacquesy, J. C.; Mondon, M. Tetrahedron Lett. 1987, 28, 3945–
3948; (b) Gesson, J. P.; Jacquesy, J. C.; Mondon, M. Tetrahedron 1989, 45, 2627–
2640; (c) Bessodes, M.; Benamghar, R.; Antonakis, K. Carbohydr. Res. 1990, 200,
493–496; (d) Dongsoo, K. Agric. Chem. Biotechnol. 2005, 49, 62–64; See also: (e)
Baskaran, S.; Vasu, J.; Kodukulla, R. P. K.; Trivedi, G. K. Tetrahedron 1996, 52,
4515–4526; (f) Subramanian, B.; Griski, K. T. J. Chem. Res. 1995, 308–309; (g)
Tadano, K.-i.; Shimada, K.-i.; Miyake, A.; Ishihara, J.; Ogawa, S. Bull. Chem. Soc.
Jpn. 1989, 62, 3978–3986.
14. Tronchet, J. M.; Gentile, B. Helv. Chim. Acta 1979, 62, 2091–2098.
15. (a) Brimacombe, J. S.; Hanna, R.; Kabir, A. K. M. S.; Bennett, F.; Taylor, I. D. J.
Chem. Soc., Perkin Trans. 1 1986, 815–821; (b) Brimacombe, J. S.; Kabir, A. K. M.
S. Carbohydr. Res. 1986, 150, 35–51.
O
O
O
O
Cbt
(13.02 kcal/mol)
Cc
(4.53 kcal/mol)
Scheme 6. Conformer energy values for proposed oxaphosphorinanes present in
Wittig olefination of xylo and ribofuranose derivatives.
conformer (Cc) for the ribo derivative is 8.49 kcal/mol more stable
than its boat-twisted conformer (Cbt). Furthermore, key finding of
this study comes from the energy gap of 4.53 kcal/mol among the
lowest conformers of both diastereoisomer oxaphosphorinanes
(Bb and Cc), being Bc the most stable oxaphosphorinanes.25 This
energy difference should be attributed to the energy strain caused
by the trans-fusion for ribofuranose derivative, as Gerlt et al. pre-
viously found,26 by thermodynamic experiments in trans-fused
six-membered ring phosphates (cAMP), that 5 kcal/mol of thermo-
dynamic instability is regarded to geometry strain resulting from
the trans-fusion. Therefore, on the basis of the above-mentioned
theoretical results, we can assume that the trans-fusion strain en-
ergy of ribofuranose derivative 7 destabilize the formation of the
anti-betaine (B) leading to the preferential formation of normal
betaine C and thus to produce higher E-selectivity than Z-selectiv-
ity. This result is actually interesting, because pointed out that the
conformation of the anti-betaine plays a key role in the Z-selectiv-
16. Shing, T. K. M.; Tsui, H.-Ch.; Zhou, Z.-H. J. Org. Chem. 1995, 60, 3121–3130.
17. We mean ‘partially’ because in those reports E-selectivities are observed: see
Ref. 4.
ity of
In summary, we have developed a highly efficient sequential
protocol for the synthesis of ,b-unsaturated-7,3-lactone-
xylofuranoses from -glucose derivatives, which are versatile chi-
a-alkoxy-b-hydroxyaldehydes with stabilized ylides.
18. Wu, W.; Wu, Y. J. Org. Chem. 1993, 58, 3586–3588.
a
a-D-
19. Bisseret, P.; Boiteau, J.-G.; Eustache, J. Tetrahedron Lett. 2003, 44, 2351–2354.
20. Maryanoff, B. E.; Reitz, A. B.; Duhl-Emswiler, B. A. J. Am. Chem. Soc. 1985, 107,
217–226.
D
ral synthons for the preparation of biologically important com-
pounds. The key step of the synthesis is the development of a
highly Z-selective Wittig olefination reaction in aqueous media.
Additionally, the anti-betaine model, which presumably provides
a rational explanation for Z-selectivities was studied by theoretical
methods and demonstrated that boat conformation of the cyclic
anti-betaine is crucial for the Z-selectivity.
21. (a) Gallagher, M. J. In Phosphorus-31 NMR Spectroscopy in Stereochemical
Analysis; Verkade, J. G., Quin, L., Eds.; VCH: Deerfield Beach, FL, 1987. Chapter 9;
(b) Bentrude, W. G. Steric and Stereoelectronic Effects in 1,3,2-
Dioxaphosphorinanes. In Methods in Stereochemical Analysis; Juaristi, E., Ed.;
VCH: New York, 1995; (c) Frank, É.; Wolfling, J. Curr. Org. Chem. 2007, 11, 1610.
22. (a) Sartillo-Piscil, S.; Cruz-Gregorio, S.; Sánchez, M.; Höpfl, H.; Anaya de
Parrodi, C.; Quintero, L. Tetrahedron 2003, 59, 4077–4083; (b) Cruz-Gregorio, S.;
Sánchez, M.; Clara-Sosa, A.; Bérnes, S.; Quintero, L.; Sartillo-Piscil, F. J. Org.
Chem. 2005, 70, 7107–7113; (c) Hermans, R. J. M.; Buck, H. M. J. Org. Chem.
1988, 53, 2077–2084; (d) Neeser, J.-T.; Tronchet, J. M. J.; Charollais, E. J. Can. J.
Chem. 1983, 61, 1387–1396.
Acknowledgments
23. Nelson, K. A.; Bentrude, W. G.; Setzer, W. N.; Hutchinson, J. P. J. Am. Chem. Soc.
1987, 109, 4058–4064.
We gratefully acknowledge the financial support from CONA-
CyT (Grant number: 62203), and Faculty of Chemistry of Benemé-
rita Universidad Autónoma de Puebla (BUAP). We also thank
Vladimir Carranza-Tellez and Dario Corte-Salazar for technical
assistance.
24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
GAUSSIAN 03, Revision E.01, Gaussian Inc., Wallingford CT, 2004.
Supplementary data
Supplementary data (general procedure for the preparation of
1a and 1b and Cartesian coordinates for conformers Bc, Bb, Cc,
and Cbt) associated with this article can be found, in the online
25. Other phosphorinane conformations were found close in energy, however the
ones showed in Scheme 6 represent the conformation that either controlling or
destabilizing Z-selectivity.
References and notes
26. (a) Gerlt, J. A.; Gutterson, N. I.; Datta, P.; Belleau, B.; Penney, C. I. J. Am. Chem.
Soc. 1980, 102, 1655–1665; (b) Gerlt, J. A.; Gutterson, N. I.; Drews, R. E.;
Sokolow, J. A. J. Am. Chem. Soc. 1980, 102, 1655–1670.
1. (a) Wittig, G.; Geissler, G. Liebigs Ann. Chem. 1953, 580, 44–68; (b) Wittig, G.
Science 1980, 210, 600–604.