Angewandte
Chemie
CuII site (409 and 310 mT, respectively, for 2; Figure S4). The
Tm value for the {Cr7Ni} component is circa 600 ns at 5 K in
both 2 and 5 (Figure S5). This is in the 400–700 ns range
(depending on the nature of the R substituent) found for
isolated [R2NH2][Cr7Ni(m-F)8(O2CtBu)16] at 5 K.[9] Tm times
for the CuII resonance are larger, at 1.0 ms for both 2 and 5,
and of the same order as found for related isolated CuII
complexes, for example, [Cu(hfac)2(4,4’-Me2-bipy)] has Tm =
3 ms at 5 K.[20] Thus, the phase memory times are not
significantly decreased as a result of the interspin interaction.
This bodes well for performing spin manipulation experi-
ments in supramolecular arrays of molecular nanomagnets.
The next steps require tuning the interaction strengths and
Zeeman frequencies such that the components can be
addressed individually within the resonator bandwidths
available with current pulsed microwave technologies. The
interaction strength will be controllable through supramolec-
ular chemistry. The difference in Zeeman frequency could be
achieved, for example, with spin clusters of marginally
different g-values[21] or with homospin clusters exploiting
non-parallel orientations and g-anisotropy.[22]
[8] a) M. Affronte, S. Carretta, G. A. Timco, R. E. P. Winpenny,
[9] a) A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M.
Tyryshkin, G. A. Timco, R. E. P. Winpenny, Phys. Rev. Lett. 2007,
98, 057201; b) C. J. Wedge, R. E. George, G. A. Timco, F. Tuna,
S. Rigby, E. J. L. McInnes, R. E. P. Winpenny, S. J. Blundell, A.
Ardavan, Phys. Rev. Lett. 2012, 108, 107204.
[10] a) C.-F. Lee, D. A. Leigh, R. G. Pritchard, D. Schultz, S. J. Teat,
Ballesteros, T. B. Faust, C.-F. Lee, D. A. Leigh, C. A. Muryn,
R. G. Pritchard, D. Schultz, S. J. Teat, G. A. Timco, R. E. P.
[11] a) Crystal data for 2 [C104H163Cr7CuF20N2O36Ni]: Mr = 2883.61,
orthorhombic, space group Pnaa, T= 100.15 K, a = 20.2386(7),
b = 27.6927(6), c = 27.4034(9) , V= 15358.6(8) 3, Z = 4, 1 =
1.247 gcmÀ3, total data = 13572, R1 = 0.1238 for I ꢁ 2s (I) and
wR2 = 0.3326. Crystal data for 3 [C179H320Cr14CuF16N6Ni2O71]:
Mr = 4905.35, orthorhombic, space group Pna21, T= 150.15 K,
a = 51.6574(10), b = 27.1191(6), c = 20.0038(3) , V= 28023.4-
(9) 3, Z = 4, 1 = 1.163 gcmÀ3, total data = 36449, R1 = 0.0993
for I ꢁ 2s (I) and wR2 = 0.2468. CCDC 1401242 (2), 1401243 (3),
and 916469 (5) contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from
Acknowledgements
data for
2 was collected on a Bruker Prospector CCD
diffractometer with CuKa radiation (l = 1.5418 ). Crystallo-
graphic data for 3 was collected on an Agilent SuperNova CCD
diffractometer with MoKa radiation (l = 0.71073 ) and was
This work was supported by the EPSRC (UK, EP/L018470/1),
the National EPR Facility, and the European Commission
(Marie Curie Intra-European Fellowship to A.F. (300402)).
E.M.P. thanks the Panamanian agency SENACYT-IFARHU
for funding. We also thank the EPSRC (UK) for funding an
X-ray diffractometer (grant number EP/K039547/1).
[12] S. Piligkos, H. Weihe, E. Bill, F. Neese, H. El Mkami, G. M.
Smith, D. Collison, G. Rajaraman, G. A. Timco, R. E. P.
[13] G. R. Eaton, S. S. Eaton, Acc. Chem. Res. 1998, 31, 107.
Keywords: EPR spectroscopy · heterometallic complexes ·
magnetic properties · quantum computing · rotaxanes
How to cite: Angew. Chem. Int. Ed. 2015, 54, 10858–10861
Angew. Chem. 2015, 127, 11008–11011
[17] C. M. Casadei, L. Bordonali, Y. Furukawa, F. Borsa, E. Garlatti,
A. Lascialfari, S. Carretta, S. Sanna, G. Timco, R. E. P. Win-
[18] G. F. S. Whitehead, B. Cross, L. Carthy, V. A. Milway, H. Rath,
A. Fernandez, S. L. Heath, C. A. Muryn, R. G. Pritchard, S. J.
S. Nakazawa, T. Murata, T. Ise, D. Hashizume, D. Shiomi, K.
[2] a) S. Nakazawa, S. Nishida, T. Ise, T. Yoshino, N. R. Mori, D.
Rahimi, K. Sato, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa,
Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori,
K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K.
Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Hçfer, T. Takui, J.
[3] F. Meier, J. Levy, D. Loss, Phys. Rev. Lett. 2003, 90, 47901.
[4] F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G.
Amoretti, S. Piligkos, G. Timco, R. E. P. Winpenny, Phys. Rev.
Lett. 2005, 94, 207208.
[5] J. Lehmann, A. Gaita-AriÇo, E. Coronado, D. Loss, Nat.
[6] D. Aguilà, L. A. Barrios, V. Velasco, O. Roubeau, A. RepollØs,
P. J. Alonso, J. SesØ, S. J. Teat, F. Luis, G. Aromí, J. Am. Chem.
[7] a) K. Bader, D. Dengler, S. Lenz, B. Endeward, S.-D. Jiang, P.
Neugebauer, J. v. Slageren, Nat. Commun. 2014, 5, DOI:
G. W. Morley, A. Stoneham, J. A. Gardener, Z. Wu, A. J.
504; c) M. J. Graham, J. M. Zadrozny, M. Shiddiq, J. S. Ander-
[20] J. M. Burchfield, J.-L. Du, K. M. More, S. S. Eaton, G. R. Eaton,
[21] G. A. Timco, E. J. L. McInnes, R. G. Pritchard, F. Tuna, R. E. P.
[22] T. B. Faust, V. Bellini, A. Candini, S. Carretta, L. Carthy, D.
Collison, R. J. Docherty, J. Kenyon, G. Lorusso, J. Machin,
E. J. L. McInnes, C. A. Muryn, R. G. Pritchard, S. J. Teat, G. A.
Timco, F. Tuna, G. F. S. Whitehead, W. Wernsdorfer, M.
Received: May 18, 2015
Published online: July 24, 2015
Angew. Chem. Int. Ed. 2015, 54, 10858 –10861
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim