SCHEME 1
En a n tiosp ecific Tota l Syn th esis of
(-)-P olyoxa m ic Acid Usin g
2,3-Azir id in o-γ-la cton e Meth od ology
Aure´lie Tarrade, Philippe Dauban, and Robert H. Dodd*
Institut de Chimie des Substances Naturelles, CNRS,
Avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France
robert.dodd@icsn.cnrs-gif.fr
Received J uly 18, 2003
connection with the search for new ligands of the exci-
tatory amino acid receptors of the central nervous
system.6f-h However, the preparation of these bicyclic
aziridines starting from pentoses required 13 steps. Such
a strategy was not compatible with structure-activity
studies or its application to the total synthesis of natural
products. We therefore recently devised a much shorter
synthesis of 2,3-aziridino-γ-lactones, thereby circumvent-
ing this problem.7 In three steps starting from D-ribono-
lactone 1, the key intermediate 3 could be obtained
stereoselectively via 1,4-addition of benzylamine to tri-
flate 2 with an overall yield of 43% (Scheme 1).
With this methodology in hand, its initial application
to the total synthesis of polyoxamic acid 4 was envisaged.
The latter is a structural constituent of polyoxins, a class
of peptidyl-nucleoside antifungal antibiotics.8 Numerous
studies have been dedicated to the synthesis of polyox-
amic acid, most of them based on use of the chiral pool.9
The non-natural enantiomer of 4 has also been prepared
in the same enantiospecific manner.10 According to our
strategy, synthesis of natural (+)-polyoxamic acid re-
quired use of L-sugars and notably L-ribonolactone for
construction of the stereochemically appropriate 2,3-
Abstr a ct: The non-natural enantiomer of polyoxamic acid
was synthesized in six steps from 2,3-aziridino-γ-lactone 7
with an overall yield of 10%. The key step of the strategy is
a deprotection-protection sequence on the nitrogen atom of
the aziridine ring required for aziridine activation toward
nucleophilic ring opening.
Aziridines are highly useful intermediates for the
preparation of nitrogen-containing compounds. Their
value is reflected by the numerous studies that have been
and are still conducted to optimize their preparation and
behavior and to enhance the scope of their applications
in the total synthesis of natural and/or biologically active
products.1-3 Among the large variety of substituted
aziridines described, aziridine 2-carboxylates hold a
prominent place as precursors of R- and â-amino acids.4
Good regiocontrol of nucleophilic ring opening of these
species can generally be achieved allowing isolation of
the desired substituted amino acid.1b,5
By analogy with aziridine 2-carboxylates, 2,3-aziridino-
γ-lactones have been shown by us to be versatile precur-
sors for the preparation of optically pure polysubstituted
amino acids.5,6 A first application of our methodology was
the total synthesis of 3,4-disubstituted glutamic acids in
(6) (a) Dubois, L.; Dodd, R. H. Tetrahedron 1993, 49, 901-910. (b)
Dubois, L.; Mehta, A.; Tourette, E.; Dodd, R. H. J . Org. Chem.. 1994,
59, 434-441. (c) Dauban, P.; Chiaroni, A.; Riche, C.; Dodd, R. H. J .
Org. Chem. 1996, 61, 2488-2496. (d) Dauban, P.; Dodd, R. H. J . Org.
Chem. 1997, 62, 4277-4284. (e) Dauban, P.; Hofmann, B.; Dodd, R.
H. Tetrahedron 1997, 53, 10743-10752. (f) Dauban, P.; De Saint-
Fuscien, C.; Dodd, R. H. Tetrahedron 1999, 55, 7589-7600. (g) Dauban,
P.; De Saint-Fuscien, C.; Acher, F.; Pre´zeau, L.; Brabet, I.; Pin, J .-P.;
Dodd, R. H. Bioorg. Med. Chem. Lett. 2000, 10, 129-133. (h) Yan, Z.;
Weaving, R.; Dauban, P.; Dodd, R. H. Tetrahedron Lett. 2002, 43,
7593-7595.
(1) For recent reviews, see: (a) Sweeney, J . B. Chem. Soc. Rev. 2002,
31, 247-258. (b) McCoull, W.; Davis, F. A. Synthesis 2000, 1347-1365.
(c) Stamm, H. J . Prakt. Chem. 1999, 341, 319-331.
(2) For selected recent studies, see: (a) Watson, I. D. G.; Yudin, A.
K. J . Org. Chem. 2003, 68, 5160-5167. (b) Sweeney, J . B.; Cantrill, A.
A. Tetrahedron 2003, 59, 3677-3690. (c) Cossy, J .; Bellosta, V.; Alauze,
V.; Desmurs, J . R. Synthesis 2002, 2211-2214. (d) Hou, X. L.; Fan, R.
H.; Dai, L. X. J . Org. Chem. 2002, 67, 5295-5300. (e) Hu, X. E.
Tetrahedron Lett. 2002, 43, 5315-5318.
(3) For selected recent applications, see: (a) Hedley, S. J .; Moran,
W. J .; Price, D. A.; Harrity, J . P. A. J . Org. Chem. 2003, 68, 4286-
4292. (b) Song, Z. L.; Wang, B. M.; Tu, Y. Q.; Fan, C. A.; Zhang, S. Y.
Org. Lett. 2003, 5, 2319-2321. (c) Xiong, C.; Wang, W.; Hruby, V. J .
J . Org. Chem. 2002, 67, 3514-3517. (d) Lapinsky, D. J .; Bergmeier,
S. C. Tetrahedron 2002, 58, 7109-7117. (e) Andrews, D. R.; Daha-
nukar, V. H.; Eckert, J . M.; Gala, D.; Lucas, B. S.; Schumacher, D. P.;
Zavialov, I. A. Tetrahedron Lett. 2002, 43, 6121-6125. (f) Lopez, O.
L.; Ferna´ndez-Bolan˜os, J . G.; Lillelund, V. H.; Bols, M. Org. Biomol.
Chem. 2003, 1, 478-482. (g) Vedejs, E.; Little, J . J . Am. Chem. Soc.
2002, 124, 748-749.
(7) De Saint-Fuscien, C.; Tarrade, A.; Dauban, P.; Dodd, R. H.
Tetrahedron Lett. 2000, 41, 6393-6397.
(8) Isono, K.; Asahi, K.; Suzuki, S. J . Am. Chem. Soc. 1969, 91,
7490-7505.
(9) (a) Kuzuhara, H.; Emoto, S. Tetrahedron Lett. 1973, 5051-5054.
(b) Saksena, A. K.; Lovey, R. G.; Girijavallabhan, V. M.; Ganguly, A.
K. J . Org. Chem. 1986, 51, 5024-5028. (c) Hirama, M.; Hioki, H.; Ito,
S. Tetrahedron Lett. 1988, 29, 3125-3128. (d) Garner, P.; Park, J . M.
J . Org. Chem. 1988, 53, 2979-2984. (e) Dure´ault, A.; Carreaux, F.;
Depezay, J .-C. Tetrahedron Lett. 1989, 30, 4527-4530. (f) Paz, M.;
Sardina, F. J . Org. Chem. 1993, 58, 6990-6995. (g) Dondoni, A.;
Franco, S.; Merchan, F. L.; Merino, P.; Tejero, T. Tetrahedron Lett.
1993, 34, 5479-5482. (h) Marshall, J . A.; Seletsky, B. M.; Coan, P. S.
J . Org. Chem. 1994, 59, 5139-5140. (i) Matsura, F.; Hamada, Y.;
Shioiri, T. Tetrahedron Lett. 1994, 35, 733-736. (j) J ackson, R. F.;
Palmer, N. J .; Wyther, M. J .; Clegg, W.; Elsegood, M. J . Org. Chem.
1995, 60, 6431-6440. (k) Kang, S. H.; Choi, H. Chem. Commun. 1996,
1521-1522. (l) Veeresa, G.; Datta, A. Tetrahedron Lett. 1998, 39, 119-
122. (m) Savage, I.; Thomas, E. J .; Wilson, P. D. J . Chem. Soc., Perkin
Trans. 1 1999, 3291-3303. (n) Davis, F. A.; Prasad, K. R.; Carroll, P.
J . J . Org. Chem. 2002, 67, 7802-7806. (o) For an enantioselective
synthesis of (+)-polyoxamic acid, see: Trost, B.; Krueger, A.; Bunt, R.
C.; Zombrano, J . J . Am. Chem. Soc. 1996, 118, 6520-6521.
(4) For selected recent studies, see: (a) Yadav, J . S.; Reddy, B. V.
S.; Shesha Rao, M.; Reddy, P. N. Tetrahedron Lett. 2003, 44, 5275-
5278. (b) Davis, F. A.; Deng, J .; Zhang, Y.; Haltiwanger, R. C.
Tetrahedron 2002, 58, 7135-7143. (c) Tranchant, M.-J .; Dalla, V.;
J abin, I.; Decroix, B. Tetrahedron Lett. 2002, 58, 8425-8432 and
references therein. (d) Atkinson, R. S.; Draycott, R. D.; Hirst, D. J .;
Parratt, M. J .; Raynham, T. M. Tetrahedron Lett. 2002, 43, 2083-
2085. (e) Zwanenburg, B.; ten Holte, P. Top. Curr. Chem 2001, 216,
93-124.
(5) Dauban, P.; Dubois, L.; Tran Huu Dau, M. E.; Dodd R. H. J .
Org. Chem. 1995, 60, 2035-2043 and references therein.
10.1021/jo035039b CCC: $25.00 © 2003 American Chemical Society
Published on Web 11/06/2003
J . Org. Chem. 2003, 68, 9521-9524
9521