1812
K. Ito et al.
LETTER
(14) (a) von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl.
(7) (a) Noyori, R.; Ohta, M.; Hsiao, Y.; Kimura, M.; Ohta, T.;
Takaya, H. J. Am. Chem. Soc. 1986, 108, 7117. (b)Kimura,
M.; Hsiao, Y.; Ohta, M.; Tsukamoto, M.; Ohta, T.; Takaya,
H.; Noyori, R. J. Org. Chem. 1994, 59, 297. (c) Morimoto,
T.; Achiwa, K. Tetrahedron: Asymmetry 1995, 6, 2661.
(d) Morimoto, T.; Suzuki, N.; Achiwa, K. Heterocycles
1996, 43, 2557. (e) Willoughby, C. A.; Buchwald, S. L. J.
Am. Chem. Soc. 1994, 116, 8952. (f) Willoughby, C. A.;
Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 11703.
(g) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1996, 118, 4916. (h) Kang, J.;
Kim, J. B.; Cho, K. H.; Cho, B. T. Tetrahedron: Asymmetry
1997, 8, 657. (i) Morimoto, T.; Suzuki, N.; Achiwa, K.
Tetrahedron: Asymmetry 1998, 9, 183. (j) Mao, J.; Baker,
D. C. Org. Lett. 1999, 1, 841.
1993, 32, 566. (b) Sprinz, J.; Helmchen, G. Tetrahedron
Lett. 1993, 34, 1769. (c) Dawson, G. J.; Frost, C. G.;
Williams, J. M. J. J. Tetrahedron Lett. 1993, 34, 3149.
(d) Loiseleur, O.; Meier, P.; Pfaltz, A. Angew. Chem., Int.
Ed. Engl. 1996, 35, 200.
(15) Typical Experimental Procedure for Allylic Amination:
Tris(dibenzylideacetone)dipalladium(0) chloroform adduct
(1.9 mg, 1.8 mmol) and ligand 2 (1.5 mg, 3.6 mmol) was
placed in a flask under nitrogen and CH2Cl2 (0.36 mL) was
added. After being stirred for 30 min at r.t., compound 1b
(50 mg, 0.12 mmol) in CH2Cl2 (0.24 mL) and K2CO3 (49.8
mg, 0.36 mmol) was added successively and the mixture was
stirred at the temperature for 12 d. The mixture was
quenched with H2O and extracted with CH2Cl2. The extract
was dried over anhyd MgSO4 and concentrated. Silica gel
chromatography of the residue (hexane–EtOAc = 9:1) gave
the desired product (33.7 mg, 89%) as an oil. [a]D23 –157.7
(c 0.38, CHCl3). 1H NMR analysis of the product at 24 °C
revealed that it existed as a 78:22 mixture of two rotamers
based on the amide function. 1H NMR (400 MHz): d = 6.64
(s, 0.22 H), 6.61 (s, 0.78 H), 6.60 (s, 0.78 H), 6.56 (s, 0.22
H), 6.06–5.93 (m, 1.78 H), 5.48–5.45 (m, 0.22 H), 5.33–5.29
(m, 1 H), 5.17–5.11 (m, 0.78 H), 5.05 (d, J = 17.2 Hz, 0.22
H), 4.55–4.48 (m, 0.22 H), 4.09–3.98 (m, 0.78 H), 3.87 (s, 3
H), 3.85 (s, 3 H), 3.56 (dt, J = 4.0 and 12.0 Hz, 0.78 H), 3.26
(dt, J = 4.8 and 12.4 Hz, 0.22 H), 3.02–2.92 (m, 1 H), 2.78–
2.71 (m, 1 H). Anal. Calcd for C15H16F3NO3: C, 57.14; H,
5.12; N, 4.44. Found: C, 57.02; H, 5.16; N, 4.42.
(8) Ukaji, Y.; Shimizu, Y.; Kenmoku, Y.; Ahmed, A.; Inomata,
K. Chem. Lett. 1997, 59.
(9) (a) Hirsenkorn, R. Tetrahedron Lett. 1990, 31, 7591.
(b) Hirsenkorn, R. Tetrahedron Lett. 1991, 32, 1775.
(10) For reviews see: (a) Hayashi, T. In Catalytic Asymmetric
Synthesis; Ojima, I., Ed.; VCH: Weinheim, 1993, 325.
(b) Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96,
395. (c) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998,
98, 1689.
(11) Example of intramolecular allylic amination: (a) Trost, B.
M.; Krische, M. J.; Radinov, R.; Zanoni, G. J. Am. Chem.
Soc. 1996, 118, 6297. (b) Domino Heck-allylic amination:
Flubacher, D.; Helmchen, G. Tetrahedron Lett. 1999, 40,
3867.
(12) (a) Ito, K.; Kashiwagi, R.; Iwasaki, K.; Katsuki, T. Synlett
1999, 1563. (b) Ito, K.; Kashiwagi, R.; Hayashi, S.; Uchida,
T.; Katsuki, T. Synlett 2001, 284.
Enantiomeric excess of the product was determined to be
88% by HPLC using a chiral stationary phase column
(Daicel Chiralcel OJ-H; hexane:i-PrOH= 9:1).
(13) All the compounds in Scheme 2 gave satisfactory 1H NMR
(400 MHz) spectra. Compound 1a: d = 6.73 (dt, J = 1.2 and
11.2 Hz, 1 H), 6.65 (s, 1 H), 6.64 (s, 1 H), 5.81 (dt, J = 6.8
and 11.2 Hz, 1 H), 4.71 (dd, J = 1.2 and 6.8 Hz, 2 H), 3.87
(s, 6 H), 3.52 (dt, J = 6.8 and 6.8 Hz, 2 H), 2.87 (t, J = 6.8
Hz, 2 H), 2.03 (s, 3 H). Compound 1b: d = 6.95 (br s, 1 H),
6.74 (dt, J = 1.2 and 11.2 Hz, 1 H), 6.65 (s, 1 H), 6.62 (s, 1
H), 5.77 (dt, J = 6.8 and 11.2 Hz, 1 H), 4.73 (dd, J = 1.2 and
6.8 Hz, 2 H), 3.87 (s, 3 H), 3.86 (s, 3 H), 3.53–3.43 (m, 2 H),
2.89 (t, J = 6.8 Hz, 2 H), 1.13 (s, 9 H).
(16) A larger scale cyclization of 1b (0.64 mmol scale) afforded
6 with slightly reduced enantioselectivity (85% ee). This
compound 6 was used for the following reactions.
(17) The specific rotation of 7a (98% ee) was [a]D24 –91.0 (c 2.03,
CHCl3) {Lit. R-isomer3d [a]D23 +88.8 (c 2.08, CHCl3)}.
Since the enantiomer of 7a has been converted into the
enantiomers of (S)-calycotomine and (S)-N-methyl-
calycotomine respectively, the synthesis of 7a means that
formal total syntheses of those isoquinoline alkaloids have
been achieved.3d
Synlett 2003, No. 12, 1809–1812 © Thieme Stuttgart · New York