M. Montana et al. / Tetrahedron Letters 46 (2005) 8373–8376
8375
Dzubow, J.; Behrens, C.; Harrison, B.; Trainor, G.;
Corbett, T. H. Invest. New Drugs 1998–1999, 16, 287–296.
6. Shoemaker, R. H. Cancer Treat. Rep. 1986, 70, 9–12.
7. Rigas, J. R.; Miller, V. A.; Tong, W. P.; Roistacher, N.;
Kris, M. G.; Orazem, J. P.; Young, C. W.; Warrell, R. P.,
Jr. Cancer Chemother. Pharmacol. 1995, 35, 483–488.
8. Erden, I. In Comprehensive Heterocyclic Chemistry II;
Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.;
Pergamon: Oxford, 1996; Vol. 1, pp 97–171.
A
B
O
O
Quinoxaline
H
H
H
H
Quinoxaline
R
R
Br
Br
9. Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric
Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York,
2000; pp 231–285.
trans-oxirane
cis-oxirane
Scheme 3. Stereoselectivity of the oxirane formation.
´
10. Giuglio-Tonolo, G.; Terme, T.; Medebielle, M.; Vanelle,
P. Tetrahedron Lett. 2003, 44, 6433–6435.
´
11. Giuglio-Tonolo, G.; Terme, T.; Medebielle, M.; Vanelle,
Intramolecular substitution proceeds by a SN2 mecha-
nism. Two conformations are possible for the transition
state as shown in Scheme 3.
P. Tetrahedron Lett. 2004, 45, 5121–5124.
12. Amiri-Attou, O.; Terme, T.; Vanelle, P. Molecules 2005,
10, 545–551.
13. Goswami, S.; Dey, S.; Jana, S.; Adak, A. K. Chem. Lett.
2004, 33, 916–917; Maidwell, N. L.; Rezai, M. R.;
Roeschlaub, C. A.; Sammes, P. G. J. Chem. Soc., Perkin
Trans. 1 2000, 10, 1541–1546.
However, the one that predominates is often determined
by an eclipsing effect. In conformation A, the ortho-
substituted benzene ring is placed between a hydrogen
and a bromine atom, while in conformation B, it is
between quinoxaline ring and bromine atom. This means
that A is more stable, and most of the intramolecular
substitution should occur from this conformation. These
effects become larger while increasing size of the
substituents.
14. General procedure for the reaction of 2,2-dibromometh-
ylquinoxaline 2 and aldehydes using TDAE. Into a two-
necked flask equipped with a silica-gel drying tube and a
nitrogen inlet were added, under nitrogen at À20 ꢂC, 7 mL
of anhydrous DMF solution of 2 (0.3 g, 1 mmol) and
aldehyde 3a–g (3 mmol). The solution was stirred and
maintained at this temperature for 30 min and then TDAE
(0.3 g, 1.5 mmol) was added dropwise (via a syringe). A
red color immediately developed with the formation of a
white fine precipitate. The solution was vigorously stirred
at À20 ꢂC for 1 h and then warmed up to room temper-
ature for 2 h. After this time TLC analysis (dichlorometh-
ane) clearly showed that 2 was totally consumed. The
orange-red turbid solution was filtered (to remove the
octamethyloxamidinium dibromide) and hydrolyzed with
80 mL of H2O. The aqueous solution was extracted with
toluene (3 · 40 mL), the combined organic layers were
washed with H2O (3 · 40 mL), and dried over MgSO4.
Evaporation of the solvent left an orange viscous liquid as
crude product. Purification by silica gel chromatography
(dichloromethane) gave the corresponding mixture of cis/
trans-isomer oxiranes 4a–g as solids. New products: 4a cis-
isomer; 1H NMR (CDCl3) d 4.64 (d, J = 4.4 Hz, 1H); 4.73
(d, J = 4.4 Hz, 1H); 7.51 (d, J = 8.6Hz, 2H); 7.73 (m, 2H);
7.97 (m, 2H); 8.03 (d, J = 8.6Hz, 2H); 8.68 (s, 1H). 13C
NMR (CDCl3) 58.9; 59.1; 123.4 (2CH); 127.6(2CH);
128.8; 129.3; 130.2; 130.6; 140.4; 141.5; 142.0; 142.7; 147.6;
We have shown in this work that 2,2-dibromomethyl-
quinoxaline 2 formed an a-bromo carbanion using
TDAE methodology. Moreover, this anion reacted on
carbonyl group of aldehyde 3a–g to give oxirane deriv-
atives in good yields. The stereoselectivity of the reac-
tion was sensitive to steric hindrance.
Acknowledgment
This work was supported by the Centre National de la
Recherche Scientifique. We express our thanks to
1
M. Noailly for H and 13C NMR spectra recording.
References and notes
1. Naylor, M. A.; Stephen, M. A.; Nolan, J.; Sutton, B.;
Tocher, J. H.; Fielden, E. M.; Adams, J. E.; Strafford, I.
Anticancer Drug Des. 1993, 8, 439–461.
148.7. trans-Isomer; 1H NMR (CDCl3)
d 4.28 (d,
J = 1.6Hz, 1H); 4.40 (d, J = 1.6Hz, 1H); 7.58 (d, J =
8.7 Hz, 2H); 7.82 (m, 2H); 8.11 (m, 2H); 8.28 (d,
J = 8.7 Hz, 2H); 8.89 (s, 1H). 13C NMR (CDCl3) 60.5;
62.2; 124.0 (2CH); 126.6 (2CH); 129.2; 129.5; 130.5; 130.8;
141.8; 142.2; 142.8; 143.2; 148.2; 150.1. Anal. Calcd for
C16H11N3O3 (293.28): C, 65.53; H, 3.78; N, 14.33. Found:
2. Harmenberg, J.; Akesson-Johansson, A.; Graslund, A.;
Malmfors, T.; Bergman, J.; Wahren, B.; Akerfeldt, S.;
Lundblad, L.; Cox, S. Antiviral Res. 1991, 15, 193–204.
3. Fournet, A.; Mahieux, R.; Fakhfakh, M. A.; Franck, X.;
Hocquemiller, R.; Figadere, B. Bioorg. Med. Chem. Lett.
2003, 13, 891–894; Munos, M.-H.; Mayrargue, J.; Four-
net, A.; Gantier, J.-C.; Hocquemiller, R.; Moskowitz, H.
Chem. Pharm. Bull. 1994, 42, 1914–1916.
4. Cheeseman, G. W. H.; Cookson, R. F. In The Chemistry
of Heterocyclic Compounds; Weissberger, A., Taylor, E.
C., Eds.; John Wiley and Sons: New York, 1979; Vol. 35,
p 1.
5. Corbett, T. H.; Lorusso, P. M.; Demchick, L.; Simpson,
C.; Pugh, S.; White, K.; Kushner, J.; Polin, L.; Meyer, J.;
Czarnecki, J.; Heilbrun, L.; Horwitz, J. P.; Gross, J. L.;
Behrens, C. H.; Harrison, B. A.; McRipley, R. J.; Trainor,
G. Invest. New Drugs 1998, 16, 129–139; Lorusso, P. M.;
Parchment, R.; Demchik, L.; Knight, J.; Polin, L.;
1
C, 65.59; H, 3.66; N, 14.33. Compound 4b cis-isomer; H
NMR (CDCl3) d 4.56(d, J = 4.4 Hz, 1H); 4.65 (d,
J = 4.4 Hz, 1H); 7.15 (d, J = 8.7 Hz, 2H); 7.25 (d, J =
8.7 Hz, 2H); 7.75 (m, 2H); 8.03 (m, 2H); 8.62 (s, 1H). 13C
NMR (CDCl3) 59.0; 59.3; 128.1 (2CH); 128.6(2CH);
128.8; 129.4; 130.0; 130.4; 131.7; 134.1; 141.6; 142.0;
143.0; 149.6. trans-Isomer; 1H NMR (CDCl3) d 4.23 (d,
J = 1.8 Hz, 1H); 4.25 (d, J = 1.8 Hz, 1H); 7.36(m, 4H);
7.79 (m, 2H); 8.11 (m, 2H); 8.86(s, 1H). 13C NMR
(CDCl3) 61.2; 61.9; 127.1 (2CH); 128.9 (2CH); 129.1;
129.4; 130.1;130.6; 134.5; 134.7; 141.8; 142.2; 142.6; 150.9.
Anal. Calcd for C16H11ClN2O (282.72): C, 67.97; H, 3.92;
N, 9.91. Found: C, 67.91; H, 3.95; N, 9.63. Compound 4c