LETTER
Preparation of Sialyl Donors
1343
Table 3 Stereoselective Glycosylation; Comparison of Methyl (1a)
and Cyanoethyl (1c) Esters
(10) (a) This compound was prepared from corresponding 2-SAc
derivative: Hasegawa, A.; Nakamura, J.; Kiso, M. J.
Carbohydr. Chem. 1986, 5, 11. (b) With Et2NH and MeI in
DMF: Angus, D. I.; von Itzstaein, M.; Kiefel, M. J.
Carbohydr. Res. 1994, 259, 293.
Entrya
1
a
c
a
c
a
c
2
Product Yield (%) a:bb
1
2
3
4
5
6
C
C
D
D
E
E
3aC
3cC
3aD
3cD
3aE
3cE
56
63
49
51
52
54
8.4:1
13:1
9.1:1
15:1
(11) Salomon, C. J.; Matta, E. G.; Mascaretti, O. A. Tetrahedron
1993, 49, 3691.
(12) Birkofer, L.; Ritter, A.; Goller, H. Chem. Ber. 1963, 3289.
(13) Brittain, J.; Gareau, Y. Tetrahedron Lett. 1993, 34, 3363.
(14) Typical procedure (compound 1h): To the solution of
compound 1a (209 mg, 0.401 mmol), 2,6-di-t-butyl-4-cresol
(18 mg, 0.08 mmol) and Ph3SiSH (352 mg, 1.20 mmol) in
dry DMF (5 mL) was added Cs2CO3 (352 mg, 1.08 mmol)
and the mixture was stirred at 80 °C for 8 h. After cooling
down to ice-water temperature, 2-nitrobenzyl bromide (261
mg, 1.21 mmol) was added and stirring continued for 4 h at
0 °C. The reaction was saturated aq KHSO4 and extracted
with EtOAc. The organic layer was washed with brine, dried
(Na2SO4), and concentrated in vacuo. The residue was
purified by flash chromatography (hexane–EtOAc, 10:1–
1:2) to give compound 1h (212 mg, 82%).
11:1
19:1
a All reactions were performed in the presence of 1.7 equiv of NIS
and 1.0 equiv of TfOH.
b Determined by 400 MHz 1H NMR.
(15) Petit, J. M.; Jaquinet, J.-C.; Sinaÿ, P. Carbohydr. Res. 1980,
82, 130.
References
(16) Honeyman, J. Methods in Carbohydr. Chem. 1962, 1, 116.
(17) (a) Pougny, J.-R.; Sinaÿ, P. Tetrahedron Lett. 1976, 4073.
(b) Schmidt, R. R.; Rücker, E. Tetrahedron Lett. 1980, 21,
1421. (c) Ratcliffe, A. J.; Fraser-Reid, B. J. Chem. Soc.,
Perkin Trans. 1 1990, 747. (d) Braccini, I.; Derouet, C.;
Esnault, J.; Hervé du Penhoat, C.; Mallet, J.-M.; Michon, V.;
Sinaÿ, P. Carbohydr. Res. 1993, 246, 23.
(1) Angata, T.; Varki, A. Chem. Rev. 2002, 102, 439.
(2) Recent review: (a) Boons, G.-J.; Demchnko, A. V. Chem.
Rev. 2000, 100, 4539. (b) Halcomb, R. L.; Chappell, M. D.
J. Carbohydr. Chem. 2002, 21, 723.
(3) (a) Kanie, O.; Kiso, M.; Hasegawa, A. J. Carbohydr. Chem.
1988, 7, 501. (b) Hasegawa, A.; Ohki, H.; Nagahama, T.;
Ishida, H.; Kiso, M. Carbohydr. Res. 1991, 212, 277.
(c) Schmidt, R. R.; Behrendt, M.; Toepfer, A. Synlett 1990,
694. (d) Vankar, Y. D.; Vankar, P. S.; Behrendt, M.;
Schmidt, R. R. Tetrahedron 1991, 47, 9985. (e) Schmidt, R.
R.; Rücker, E. Tetrahedron Lett. 1980, 21, 1421.
(f) Birberg, W.; Lönn, H. Tetrahedron Lett. 1991, 32, 7457.
(4) (a) Ito, Y.; Numata, M.; Sugimoto, M.; Ogawa, T. J. Am.
Chem. Soc. 1989, 111, 8508. (b) Ito, Y.; Ogawa, T.
Tetrahedron Lett. 1988, 29, 3987. (c) Kondo, T.; Abe, H.;
Goto, T. Chem. Lett. 1988, 1657. (d) Ercégovec, T.;
Magnusson, G. J. Org. Chem. 1995, 60, 3378.
(e) Martichonok, V.; Whitesides, G. M. J. Am. Chem. Soc.
1996, 118, 8187. (f) Ercégovec, T.; Magnusson, G. J. Org.
Chem. 1996, 61, 179. (g) Castro-Palomino, J. C.; Tsvetkov,
Y. E.; Schmidt, R. R. J. Am. Chem. Soc. 1998, 120, 5434.
(5) Demchenko, A. V.; Boons, G.-J. Chem.-Eur. J. 1999, 5,
1278.
(18) Stabilization of anomeric cation by multiple molecules of
acetonitrile was proposed. See refs.3c,d
(19) Nakahara, Y.; Iijima, H.; Ogawa, T. Tetrahedron Lett. 1994,
35, 3321.
(20) Paulsen, H.; Paar, M.; Hadamczvk, D.; Steiger, K.-M.
Carbohydr. Res. 1984, 131, C1.
(21) Sato, S.; Ito, Y.; Ogawa, T. Tetrahedron Lett. 1988, 29,
4759.
(22) NMR (CD3OD, 400 MHz) d 1.72 (1 H, t, J = 12.0 Hz, H-
3Neu5Ac), 1.85, 1,86, 1.97, 1.98, 1.99, and 2.10 (each 3 H, s,
6Ac), 2.71 (1 H, dd, J = 12.0 Hz, 4.0 Hz, H-3Neu5Ac), 3.37–
3.42 (1 H, m, H-6Gal), 3.52–3.60 (3 H, m, H-5Gal, H-6Glc, H-
2Gal), 3.83–3.88 (3 H, m, H-6Glc, H-6¢Glc, H-5Gal), 3.97–4.09
(3 H, m, H-4Glc, CH2=CHCH2, H-5Neu5Ac), 4.09 (1 H, dd, J =
11.2 Hz, 8.4 Hz, H-2Gal), 4.14 (1 H, dd, J = 12.4 Hz, 5.2 Hz,
H-9Neu5Ac), 4.14 (1 H, dd, J = 12.4 Hz, 5.2 Hz, H-9Neu5Ac),
4.17–4.25 (2 H, m, H-9Neu5Ac, CH2CH=CH2), 4.28 (1 H, dd,
J = 11.2 Hz, 8.4 Hz), 4.39 (1 H, d, J = 12.0 Hz, Bn), 4.41 (1
H, dd, J = 12.4 Hz, 3.2 Hz, H-9Neu5Ac), 4.49 (1 H, d, J = 12.4
Hz, Bn), 4.54 (1 H, d, J = 12.0 Hz, Bn), 4.59 (1 H, d, J = 12.0
Hz, Bn), 4.69 (1 H, dd, J = 9.6 Hz, 2.4 Hz, H-3Gal), 4.76 (1
H, d, J = 12. 0 Hz, Bn), 4.81 (1 H, d, J = 7.2 Hz, H-1Gal),
4.88–4.96 (2 H, m, Bn), 4.98–5.03 (1 H, m, CH2CH=CH2),
5.03–5.23 (2 H, m, CH2CH=CH2, H-4Neu5Ac), 5.16 (1 H, d, J
= 8.4 Hz, H-1Gal), 5.18 (1 H, d, J = 12.4 Hz, Bn), 5.38 (1 H,
d, J = 2.4 Hz, H-4Gal), 5.39 (1 H, dd, J = 8.0, 2.4 Hz, H-
(6) Yu, C.-S.; Niikura, K.; Lin, C.-C.; Wong, C.-H. Angew.
Chem. Int. Ed. 2001, 40, 2900.
(7) De Meo, C.; Demchenko, A. V.; Boons, G.-J. Aust. J. Chem.
2002, 55, 131.
(8) Takahashi, T.; Tsukamoto, H.; Yamada, H. Tetrahedron
Lett. 1997, 38, 8223.
(9) Haberman, J. M.; Gin, D. Y. Org. Lett. 2001, 3, 1665.
7Neu5Ac), 5.66–5.77 (2 H, m, H-8Neu5Ac, CH2CH=CH2), 6.82–
7.90 (24 H, m, Ar).
Synlett 2003, No. 9, 1339–1343 ISSN 1234-567-89 © Thieme Stuttgart · New York