3 (a) J. M. J. Tronchet, E. Mihaly and M. Geoffroy, Helv. Chim. Acta,
1975, 58, 1187–1191; (b) J. Tronchet, M. J. Jean, E. Winter-Mihaly, K.
D. Pallie, J. Ojha-Poncet and M. Geoffroy, Carbohydr. Res., 1981, 95,
27–50; (c) R. Feher, D. B. Amabilino, K. Wurst and J. Veciana, Mol.
Cryst. Liq. Cryst., 1999, 334, 333–345; (d) M. A. Abdallah, J. J. Andre
and J. F. Biellmann, Bioorg. Chem., 1977, 6, 157–163.
4 (a) A. Caneschi, D. Gatteschi, R. Sessoli and P. Rey, Acc. Chem. Res.,
1989, 22, 392–398; (b) A. Caneschi, D. Gatteschi and P. Rey, Progr.
Inorg. Chem., 1991, 39, 331–429.
5 For reviews, see:(a) V. I. Ovcharenko and R. Z. Sagdeev, Uspekhi
Khimii, 1999, 68, 381–400; V. I. Ovcharenko and R. Z. Sagdeev, Russ.
Chem. Rev., 1999, 68, 345–363; (b) Magnetism: A Supramolecular
Function, ed. O. Kahn, Kluwer Academic, Dordrecht, 1996; (c) Mol.
Cryst. Liq. Cryst. eds. K. Itoh, J. S. Miller, T. Takui, 1997, 305/306,
1–586/1–520; (d) Mol. Cryst. Liq. Cryst. ed. O. Kahn, 1999, 334/335,
1–712/1–706; (e) Magnetic Properties of Organic Materials, ed. P. M.
Lahti, Marcel Dekker, New York, 1999; (f) Molecular Magnetism, eds.
K. Itoh and M. Kinoshita, Gordon and Breach, Amsterdam, 2000.
6 Molecular magnetic complexes involving other organic spin carriers:
(a) K. Inoue and H. Iwamura, J. Am. Chem. Soc., 1994, 116, 3173–1374;
(b) K. Inoue, T. Hayamizu, H. Iwamura, D. Hashizume and Y. Ohashi,
J. Am. Chem. Soc., 1996, 118, 1803–1804; (c) R. G. Hicks, M. T.
Lemaire, L. K. Thompson and T. M. Barclay, J. Am. Chem. Soc., 2000,
122, 8077–8078; (d) J. M. Rawson and G. D. McManus, Coord. Chem.
Rev., 1999, 189, 135–168; (e) W. Fujita and K. Awaga, J. Am. Chem.
Soc., 2001, 123, 3601–3602.
Fig. 1 X-Ray crystal structure of 10a. Relevant structural parameters (Å,
deg.) [and corresponding ones of 1a]. O1–N1 = 1.298(1) [1.266(6)], O2–
N2
= 1.288(1) [1.273(8)], N1–C1 = 1.347(2) [1.351(6)], N2–C1 =
1.351(2) [1.399(8)], C1–C9 = 1.485(2) [1.471(6)], O1–N1–C1 = 119.2(1)
[127.4(5)], O2–N2–C1 = 119.2(1) [126.2(4)], N1–C1–N2 = 121.2(1)
[108.9(4)].
7 (a) K. Awaga and Y. Maruyama, J. Chem. Phys., 1989, 91, 2743–2747;
(b) J. Cirujeda, M. Mas, E. Molins, F. Lanfranc de Panthou, J. Laugier,
J. Park, C. Paulsen, P. Rey, C. Rovira and J. Veciana, J. Chem. Soc.,
Chem. Commun., 1995, 709–710; (c) J. A. Crayston, J. N. Devine and
J. C. Walton, Tetrahedron, 2000, 56, 7829–7857.
8 (a) V. A. Reznikov and L. B. Volodarsky, Tetrahedron, 1993, 49,
10669–10962; (b) M. A. Voinov and L. B. Volodarsky, Russ. Chem.
Bull., 1997, 46, 126–132; (c) I. A. Grigorev, L. B. Volodarsky, V. F.
Starichenko and I. A. Kirilyuk, Tetrahedron Lett., 1989, 30, 751–754.
9 F. Heinzer, M. Soukup and A. Eschenmoser, Helv. Chim. Acta, 1978,
61, 2851–2874.
This synthetic route may easily be extended to prepare
pyrimidinyl nitronyl nitroxides: use of different nitriles allows
substitutions at C2, with the same possibilities as for the
numerous imidazolidinyl nitronyl nitroxides; although re-
arrangements may occur in some Ritter reactions,16 a choice of
appropriate Grignard reagents and of b-aminoketones may
provide access to pyrimidyl nitronyl nitroxides with various
substituents at C4, C5 and C6. Furthermore, chiral magnetic
materials17 could be obtained starting from chiral molecules
such as (1R,4S)-8-amino-p-menthanone.18
10 S. N. Ghriofa, R. Darcy and M. Conlon, J. Chem. Soc., Perkin Trans. 1,
1977, 651–653.
11 M. Kohn, Monatsh. Chem., 1907, 1049–1053.
12 E.-J. Tillmanns and J. J. Ritter, J. Org. Chem., 1957, 22, 839–840.
13 J. Aspinall, J. Am. Chem. Soc., 1940, 62, 2160–2162.
Notes and references
‡ Melting points (°C) for 10a: 139–140; 10b: 190–192; 10c: 115–117; 10d:
150–151; crystalline 10e spontaneously decomposes at room temperature.
§ Selected data: ESR: aX, (mT) H2O: 9a: aN 0.38 and 1.00; 10a, 10b, 10c
and 10d: aN 0.79; 10e: aN 0.81, aH 0.30. UV-Vis for 10a, lmax/nm (e/mol21
dm3 cm21), n-hexane (c = 4 3 1024 mol L21): 261 (7000), 355 (6900), 626
14 (a) W.-L. Huang, R. Chiarelli and A. Rassat, Tetrahedron Lett., 2000,
41, 8787–8789; (b) C. Hirel, K. E. Vostrikova, J. Pécaut, V. I.
Ovcharenko and P. Rey, Chem. Eur. J., 2001, 7, 2007–2014.
15 (a) W. Wong and S. F. Watkins, J. Chem. Soc., Chem. Commun., 1973,
888–889; (b) A. Zheludev, V. Barone, M. Bonnet, B. Delley, A. Grand,
E. Ressouche, P. Rey, R. Subra and J. Schweizer, J. Am. Chem. Soc.,
1994, 116, 2019–2027.
(935) [compare 1a:1c 238 (8640), 266 (12850), 346 (9300), 362 (17700),
24
587 (407), 637 (450)]; EtOH (c = 4.3 10
mol L21): 258 (4500), 326
(7500), 596 (1500) [compare 1a: 238 (9400), 263 (12 200), 360 (13 300),
588 (685)].
16 L. I. Krimen and D. J. Costa, Org. React., 1969, 17, 213–325.
17 For chiroptical phenomena in odd-electron molecules and the interplay
of chirality and magnetism, see: (a) L. D. Barron and A. D.
Buckingham, Acc. Chem. Res., 2001, 34, 781–789 and refs therein (b) F.
A. Pinheiro and B. A. van Tiggelen, Phys. Rev. E, 2002, 66, 16607. For
chiral nitroxides, see (c) R. Ramasseul, A. Rassat and P. Rey,
Tetrahedron, 1974, 30, 265–276; (d) N. Naik and R. Braslau,
Tetrahedron, 1998, 54, 667–696. For recent work on chiral magnetic
material, see (e) M. Minguet, D. Luneau, E. Lhotel, V. Villar, C.
Paulsen, D. B. Amabilino and J. Veciana, Angew. Chem., 2002, 114,
606–609 (Angew. Chem., Int. Ed. Engl., 2002, 41, 586–588); (f) K.
Inoue, H. Imai, P. S. Ghalsasi, K. Kikushi, O. Masaaki, O. Hisashi and
J. V. Yakhmi, Angew. Chem., 2001, 113, 4372–4375 (Angew. Chem.,
Int. Ed. Engl., 2001, 40, 4242–4245); (g) M. Gruselle, R. Andres, B.
Malezieux, C. Train and M. Verdaguer, Chirality, 2001, 13, 712–71.
18 A. Rassat and P. Rey, Tetrahedron, 1974, 30, 3315–33.
¶ Crystal data for 10a: C14H19NO, M = monoclinic, P21/n, a = 6.243(1),
b = 21.36(1), c = 9.998(1)Å, b = 96.862(2)°, V = 1323.9(2) Å3, Z = 4,
D (calc.) = 1.241 Mg m23, l(Mo-Ka) = 0.71073 Å, T = 19 °C, 6664
reflections collected, 3093 independent reflections, full-matrix least squares
on F2, 239 parameters, final Rindices [I > 2s(I)]: R1 = 0.0405, wR2
=
for crystallographic data in CIF or other electronic format.
1 (a) J. H. Osiecki and E. F. Ullman, J. Am. Chem. Soc., 1968, 90,
1078–1079; (b) E. F. Ullman, L. Call and J. H. Osiecki, J. Org. Chem.,
1970, 35, 3623–3631; (c) E. F. Ullman, J. H. Osiecki, D. G. B. Boocock
and R. Darcy, J. Am. Chem. Soc., 1972, 94, 7049–7059.
2 J. Joseph, B. Kalyanaranaman and J. S. Hyde, Biochem. Biophys. Res.
Commun., 1993, 192, 926–934.
CHEM. COMMUN., 2003, 2722–2723
2723