Amphiphilic Monopyrrolo-TTF and TCNQ Derivatives
J. Phys. Chem. B, Vol. 107, No. 50, 2003 13937
Molecules and Polymers Vol. 1; Nalwa, H. S., Ed.; Wiley: Stuttgart,
Germany, 1997.
(2) (a) Carlin, R. L. Magnetochemistry; Springer-Verlag: New York,
1986. (b) Kahn, O. Molecular Magnetism; VCH: Weinheim, Germany,
1992.
(3) (a) Handbook of AdVanced Electronic and Photonic Materials and
DeVices; Nalwa, H. S., Ed.; Academic Press: San Diego, CA, 2001. (b)
Konuma, T.; Akutagawa, T.; Yumoto, T.; Nakamura, T.; Kawamata, J.;
Inoue, K.; Nakamura, T.; Tachibana, H.; Matsumoto, M.; Ikegami, K.;
Horiuchi, S.; Yamochi, H.; Saito, G. Thin Solid Films 1998, 327-329, 348.
(4) (a) Ferraris, J. P.; Cowan, D. O.; Walatka, D. O.; Perlstein, J. H.
J. Am. Chem. Soc. 1973, 95, 948. (b) Khanna, S. K.; Pouget, J. P.; Comes,
R. Garito, A. F.; Hegger, A. J. Phys. ReV. 1977, 16, 1468. (c) Denoyer, F.;
Comes, R.; Garito, A. F.; Hegger, A. J. Phys. ReV. Lett. 1975, 35, 445. (d)
Kagoshima, S.; Anzai, H.; Kajimura, K.; Ishiguro, T. J. Phys. Soc. Jpn.
1975, 39, 1143.
A is expected to occur along the substrate surface. The insulating
electrical conductivity and hνCT - ∆E plot in the V-shape
diagram strongly suggest a mixed-stack structure of 1 and
TCNQ. Several ag modes were activated in the IR spectra of
the LB films of 3a-3c. However, the activation of ag modes
was not observed in the LB films of 3d-3f. Because these ag
modes are principally forbidden in the IR spectra, lattice
distortions within the π-stacking axis, such as dimerization, are
believed to be present in the LB films of 3a-3c.
Summary
CT complexes consisting of an amphiphilic MP-TTF deriva-
tive 1 and one of six kinds of TCNQ derivatives were used to
fabricate LB films. The electron affinity of the TCNQ deriva-
tives can be varied by more than 0.4 eV by changing the
substitutents at the 2 and 5 positions of TCNQ from 2-methoxy-
5-ethoxy-TCNQ to 2,5-difluoro-TCNQ. Monolayers transferred
onto mica surfaces by a single withdrawal were found to be
rather uniform, except for the TCNQ complex, which exhibited
a spongelike structure. The UV-vis-NIR spectra of these LB
films exhibited CT transitions in the NIR-IR energy region,
with energies (hVCT) corresponding to the difference in redox
potential (∆E) between the first oxidation potential of the MP-
TTF derivative 1 and the first reduction potential of the TCNQ
derivatives. The ∆E - hVCT plots of the LB films were observed
to be in good agreement with the theoretical predictions for
mixed-stack CT complexes, an observation which also is
consistent with the insulating electrical conductivity of the LB
films. From the optical properties, it was deduced that the CT
complexes of 2,5-difluoro-TCNQ, fluoro-TCNQ, and TCNQ
have ionic electronic ground states, whereas those of decyl-
TCNQ, 2,5-dimethyl-TCNQ, and 2-methoxy-5-ethoxy-TCNQ
have neutral electronic ground states. Among these LB films,
the electronic ground states of (1)(TCNQ) and (1)(decyl-TCNQ)
were estimated to be (D+0.6)(A-0.6) and (D+0.3)(A-0.3), respec-
tively, which are located around the neutral-ionic phase
boundary. The parallel arrangement of the CT transition moment
to the substrate surface was confirmed by polarized UV-vis-
NIR, transmission IR, and reflection-absorption IR spectra for
these LB films. Systematic modulation of the electronic ground
state of the CT complexes (1)(TCNQs) is possible by controlling
the electron affinity of the TCNQ derivatives, which changes
the dipole interaction of the D-A pairs in the thin-film
structures. The LB films composed of mixed-stack CT com-
plexes with tunable electronic structures are attractive candidates
for the formation of nonlinear optical and dielectric materials.
(5) Torrance, J. B.; Vazquez, J. E.; Mayerle, J. J.; Lee, V. Y. Phys.
ReV. Lett. 1981, 26, 253.
(6) (a) Tokura, Y.; Koshihara, S.: Iwasa, Y.; Okamoto, H.; Komatsu,
T.; Koda, T. Phys. ReV. Lett. 1989, 63, 2405. (b) Horiuchi, S.; Okimoto,
Y.; Kumai, R.; Tokura, Y. Science 2003, 299, 229.
(7) (a) Tokura, Y.; Okamoto, H.; Koda, T. Mitani, T.; Saito, G. Phys.
ReV. B 1988, 38, 2215. (b) Iwasa, Y.; Koda, T.; Koshihara, S.; Tokura, Y.;
Iwasawa, N.; Saito, G. Phys. ReV. B 1989, 39, 10441. (c) Iwasa, Y.; Koda,
T.; Tokura, Y.; Koshihara, S.; Iwasawa, N.; Saito, G. Appl. Phys. Lett. 1989,
55, 2111.
(8) (a) Koshihara, S.; Tokura, Y.; Mitani, T.; Saito, G.; Koda, T. Phys.
ReV. B 1990, 42, 6853. (b) Koshihara, S.; Takahashi, Y.; Sakai, H.; Tokura,
Y.; Luty, T. J. Phys. Chem. B 1999, 103, 2592.
(9) Iwai, S.; Tanaka, S.; Fujinuma, K.; Kishida, H.; Okamoto, H.;
Tokura, Y. Phys. ReV. Lett. 2002, 88, 57402.
(10) (a) Ikegami, K.; Kuroda, S.; Saito, M.; Saito, K.; Sugi, M.;
Nakamura, T.; Matsumoto, M.; Kawabata, Y. Phys. ReV. B 1987, 35, 3667.
(b) Miura, Y. F.; Takenaga, M.; Ksai, A.; Nakamura, T.; Matsumoto, M.;
Kawabata, Y. Jpn. J. Appl. Phys. 1991, 30, 3503. (c) Isotaro, H.; Paloheimo,
J.; Miura, Y. F.; Azumi, R.; Matsumoto, M.; Nakamura, T. Phys. ReV. B
1995, 51, 1809. (d) Nakamura, T. Handbook of Organic ConductiVe
Molecules and Polymers. Vol. 1 Charge-Transfer Salts, Fullerenes and
Photoconductors; Nalwa, H. S., Ed.; Wiley: Stuttgart, Germany, 1997; p
728. (e) Bryce, M. R.; Petty, M. C. Nature 1995, 374, 771.
(11) (a) Metzger, R. M.; Chen, B.; Ho1pfner, U.; Lakshmikantham, M.
V.; Vuillaume, D.; Kawai, T.; Wu, X.; Tachibana, H. Hughes, T. V.; Sakurai,
H.; Baldwin, J. W.; Hosch, C.; Cava, O. M. P.; Brehmer, L.; Ashwell, G.
J. J. Am. Chem. Soc. 1997, 119, 10455. (b) Metzger, R. M. Acc. Chem.
Res. 1999, 32, 950.
(12) (a) Akutagawa, T.; Ohta, T.; Hasegawa, T.; Nakamura, T.;
Christensen, C. A.; Becher, J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5028.
(b) Akutagawa, T.; Nakamura, T. In Semiconductor and Molecular-assembly
Nanowires in Chemistry of Nano-molecular Systems - Toward the
Realization of Molecular DeVices; Sugiura, K., Matsumoto, T., Tada, H.,
Nakamura, T., Eds.; Springer-Verlag: Berlin, 2002; p 122.
(13) (a) Tachibana, H.; Nakamura, T.; Matsumoto, M.; Komizu, H.;
Manda, E.; Niio, H.; Yabe, A.; Kawabata, Y. J. Am. Chem. Soc. 1989,
111, 3080. (b) Collier, C. P.; Wong, E. W.; Belohradsky, M.; Raymo, F.
M.; Stoddart, J. F.; Kuekes, P. J.; Williams, R. S.; Heath, J. R. Science
1999, 285, 391. (c) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Lou, Y.;
Beverly, K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science
2000, 289, 1172. (d) Collier, C. P.; Jeppesen, J. O.; Luo, Y.; Perkins, J.;
Wong, E. W.; Heath, J. R.; Stoddart, J. F. J. Am. Chem. Soc. 2001, 123,
12632. (e) Service, R. F. Science 2001, 294, 2442. (f) Luo Y.; Collier, C.
P.; Jeppesen, J. O.; Nielsen, K. A.; Delonno, E.; Ho, G.; Perkins, J.; Tseng,
H.-R.; Yamamoto, T.; Stoddart, J. F.; Heath, J. R. ChemPhysChem. 2002,
3, 519. (g) Jacoby, M. Chem. Eng. News 2002, 80 (39), 38. (h) Chen, Y.;
Ohlberg, D. A. A.; Li, X.; Stewart, D. R.; Williams, R. S.; Jeppesen, J. O.;
Nielsen, K. A.; Stoddart, J. F.; Olynick, D. L.; Anderson, E. Appl. Phys.
Lett. 2003, 82, 1610. (i) Chen, Y.; Jung, G.-Y.; Ohlberg, D. A. A.; Li, X.;
Stewart, D. R.; Jeppesen, J. O.; Nielsen, K. A.; Stoddart, J. F.; Williams,
R. S. Nanotechnology 2003, 14, 462.
Acknowledgment. This work was partly supported by a
Grant-in-Aid for Science Research from the Ministries of
Education, Culture, Sports, Science and Technology of Japan
and by the Carlsbergfondet in Denmark.
Supporting Information Available: The AFM images of
the films transferred onto mica surface by a single withdrawal
(3b and 3f), transmission and reflection-absorption IR spectra
(3a, 3b, 3d, 3e, and 3f), and polarized UV-vis-NIR spectra
(3a, 3b, 3d, 3e, and 3f). This material is available free of charge
(14) Wohltjen, H.; Barger, E. R.; Snow, A. W.; Jarvis, N. L. IEEE Trans.
Elec. DeV. 1985, ED-32, 1170.
(15) (a) Jeppesen, J. O.; Perkins, J.; Becher, J.; Stoddart, J. F. Org. Lett.
2000, 2, 2457. (b) Jeppesen, J. O.; Perkins, J.; Becher, J.; Stoddart, J. F.
Angew. Chem., Int. Ed. 2001, 40, 1216. (c) Nielsen, M. B.; Jeppesen, J.
O.; Lau, J.; Lomholt, C.; Damgaard, D.; Jacobsen, J. P.; Becher, J.; Stoddart,
J. F. J. Org. Chem. 2001, 66, 3559. (d) Becher, J.; Brimert, T.; Jeppesen,
J. O.; Pedersen, J. Z.; Zubarev, R.; Bjørnholm, T.; Reitzel, N.; Jensen, T.
R.; Kjaer, K.; Levillain, E. Angew. Chem., Int. Ed. 2001, 41, 249. (e)
Jeppesen, J. O.; Becher, J.; Stoddart J. F. Org. Lett. 2002, 4, 557. (f) Nielsen,
K.; Jeppesen, J. O.; Thorup, N.; Becher, J. Org. Lett. 2002, 4, 1327. (g)
Trippe´, G.; Levillain, E.; Derf, F. L.; Gorgues, A.; Salle´, M.; Jeppesen, J.
O.; Nielsen, K.; Becher, J. Org. Lett. 2002, 4, 2461. (h) Nielsen, K.;
Jeppesen, J. O.; Levillain, E.; Thorup, N.; Becher, J. Org. Lett. 2002, 4,
4189. (i) Nielsen, K. A.; Jeppesen, J. O.; Levillain, E.; Becher, J. Angew.
References and Notes
(1) (a) Cowan, D. O. In New Aspects of Organic Chemistry; Yoshida,
Z., Shiba, T., Oshiro, Y., Eds.; Kodansha: Tokyo, 1989. (b) Saito, G. In
Metal-Insulator Transition ReVisited; Edwards, P. P., Rao, C. N. R., Eds.;
Taylor & Francis: London, 1995. (c) Organic Conductors; Farges, J.-P.,
Ed.; Marcel Dekker: New York, 1994. (d) Handbook of Organic ConductiVe