8928
K. Makino et al. / Tetrahedron Letters 44 (2003) 8925–8929
Ohnishi, M.; Taniguchi, N.; Fukumoto, K.; Kabuto, C.
References
J. Am. Chem. Soc. 1993, 115, 8107–8115; (k) Ogiku, T.;
Yoshida, S.; Takahashi, M.; Kuroda, T.; Ohmizu, H.;
Iwasaki, T. Tetrahedron Lett. 1992, 33, 4473–4476; (l)
Ihara, M.; Ohnishi, M.; Takano, M.; Makita, K.;
Taniguchi, N.; Fukumoto, K. J. Am. Soc. Chem. 1992,
114, 4408–4410; (m) Xia, Y.; Kozikowski, A. P. J. Am.
Chem. Soc. 1989, 111, 4116–4117; (n) Kobayashi, S.;
Mukaiyama, T. Chem. Lett. 1986, 221–224.
1. Katrizky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron
1996, 52, 15031–15070.
2. Witherup, K. M.; Ransom, R. W.; Graham, A. C.;
Bernard, A. M.; Salvatore, M. J.; Lumma, W. C.; Ander-
son, P. S.; Pitzenberger, S. M.; Verga, S. L. J. Am. Chem.
Soc. 1995, 117, 6682–6685.
3. (a) Batey, R. A.; Powell, D. A. Chem. Commun. 2001,
2362–2363; (b) He, Y.; Mahmud, H.; Wayland, B. R.;
Dias, H. V. R.; Lovely, C. J. Tetrahedron Lett. 2002, 43,
1171–1174; (c) Malassene, R.; Sanchez-Bajo, L.; Toupet,
L.; Hurvois, J. P.; Moinet, C. Synlett 2002, 1500–1504;
(d) Nyerges, M.; Fejes, I.; Toke, L. Synthesis 2002,
1823–1828; (e) Mahmud, H.; Lovely, C. J.; Dias, H. V.
R. Tetrahedron 2001, 57, 4095–4105; (f) Hadden, M.;
Nieuwenhuyzen, M.; Potts, D.; Stevenson, P. J.; Thomp-
son, N. Tetrahedron 2001, 57, 5615–5624; (g) Frank, K.
E.; Aube, J. J. Org. Chem. 2000, 65, 655–666; (h)
Nieman, J. A.; Ennis, M. D. Org. Lett. 2000, 2, 1395–
1397; (i) Nyerges, M.; Fejes, I.; Toke, L. Tetrahedron
Lett. 2000, 41, 7951–7954; (j) Snider, B. B.; Ahn, Y.;
Foxman, B. M. Tetrahedron Lett. 1999, 40, 3339–3342;
(k) Hadden, M.; Stevenson, P. J. Tetrahedron Lett. 1999,
40, 1215–1218; (l) Batey, R. A.; Simoncic, P. D.; Lin, D.;
Smyj, R. P.; Lough, A. J. Chem. Commun. 1999, 651–652;
(m) Lovely, C. J.; Mahmud, H. Tetrahedron Lett. 1999,
40, 2079–2082; (n) Kim, S. S.; Cheon, H. G.; Kang, S.
K.; Yum, E. K.; Choi, J. K. Heterocycles 1998, 48,
221–226; (o) Gurjar, M. K.; Pal, S.; Rao, A. V. R.
Heterocycles 1997, 45, 231–234; (p) Ho, T. C. T.; Jones,
K. Tetrahedron 1997, 53, 8287–8294.
7. Yavari, I.; Esmaili, A. A.; Ramazani, A.; Bolbol-Amiri,
A. R. Monatsh. Chem. 1997, 128, 927–931.
8. Shioiri, T.; Arai, S. In Stimulated Concepts in Chemistry;
Vogtle, F.; Stoddart, J. F.; Shibasaki, M., Eds.; New
York: Wiley-VCH, 2000; pp. 123–143.
9. For similar cyclization using N-alkyl o-aminophenyl-
ketones and N-methyl o-aminobenzaldehyde, see (a)
Kobayashi, K.; Nakanishi, R.; Shimizu, A.; Kitamura,
T.; Morikawa, O,; Konishi, H. J. Chem. Soc., Perkin
Trans. 1 1999, 1547–1551; (b) Apple, I. A.; Meth-Cohn,
O. ARKIVOC 2002, 4–14.
10. Typical procedure for condition A: To a mixture of 2-(4-
methoxybenzenesulfonylamino)benzaldehyde 3 (70 mg,
0.24 mmol), enone 4 (0.72 mmol), and BnEt3NCl (10 mg,
0.04 mmol) in CHCl3 (1 mL) was added 4 M aq. K2CO3
(1 mL) at 23°C under an argon atmosphere. After stirring
the mixture for 64 h at 23°C, the mixture was diluted
with EtOAc. The organic layer was washed with H2O and
saturated aqueous NaCl, and dried over Na2SO4. After
removal of the solvent, the residue was purified with
column chromatography. The product was eluted with
EtOAc–n-hexane (1:2) to give the 1,2-dihydroquinoline as
solids in 84% yield: mp 142–143°C (EtOAc–n-hexane); IR
1
(KBr) 2969, 2928, 1660, 1595 1260, 1163 cm−1; H NMR
4. For total synthesis of martinellic acid and martinelline,
see: (a) Ma, D.; Xia, C.; Jiang, J.; Zhang, J.; Tang, W. J.
Org. Chem. 2003, 68, 442–451; (b) Powell, D. A.; Batey,
R. A. Org. Lett. 2002, 4, 2913–2916; (c) Xia, C.; Heng,
L.; Ma, D. Tetrahedron Lett. 2002, 43, 9405–9409; (d)
Ma, D.; Xia, C.; Jiang, J.; Zhang, J. Org. Lett. 2001, 3,
2189–2191; (e) Hadden, M.; Nieuwenhuyzen, M.;
Osborne, D.; Stevenson P. J.; Thompson, N. Tetrahedron
Lett. 2001, 42, 6417–6419; (f) Snider, B. B.; Ahn, Y.;
O’Hare, S. M. Org. Lett. 2001, 3, 4217–4220.
(CDCl3) l 1.09 (d, 3H, J=7 Hz), 2.12 (s, 3H), 3.79 (s,
3H), 5.50 (q, 1H, J=6.9 Hz), 6.71 (d, 2H, J=9.2 Hz),
6.82 (s, 1H), 7.1 (dd, 1H, J=7.6 Hz, 1.5 Hz), 7.23 (d, 2H,
J=9.0 Hz) 7.30 (dt, 1H, J=7.5Hz, 1.1 Hz), 7.46 (dd, 1H,
J=8.1 Hz, 1.6 Hz), 7.79 (d, 1H, J=8.1 Hz); 13C NMR
(CDCl3) l 19.0, 24.9, 48.8, 55.5, 113.5, 126.7, 127.1,
128.4, 128.5, 128.9, 130.4, 130.9, 131.9, 134.2, 138.5,
162.9, 195.2; MS (FAB, NBA) 358 (M+H+). Anal. calcd
for C19H19NO4S: C, 63.85; H, 5.36; N, 3.92. Found: C,
63.9; H, 5.24; N, 3.86.
5. For a review of tandem reactions and Michael-aldol
reaction, see: (a) Tietze, L. F. Chem. Rev. 1996, 96,
115–136; (b) Takasu, K. Yakugaku Zasshi 2001, 121,
887–898.
11. Typical procedure for condition B: The reaction was car-
ried out by using sodium hydrogen carbonate as a base
and tetrahydrofuran as a solvent instead of 4 M K2CO3
and CHCl3 according to condition A. Chromatography
of the crude material using EtOAc–n-hexane (1:1) as an
eluant gave the tetrahydroquinoline in 81% yield: IR
6. (a) Kataoka, T.; Kinoshita, S.; Kinoshita, H.; Fujita, M.;
Iwamura, T.; Watanabe, S. Chem. Commun. 2001, 1958–
1959; (b) Richards, E. L.; Murphy, P. J.; Dinon, F.;
Fratucello, S.; Brown, P. M.; Gelbrich, T.; Hursthouse,
M. B. Tetrahedron 2001, 57, 7771–7784; (c) Yang, X.-F.;
Hou, X.-L.; Dai, L.-X. Tetrahedron Lett. 2000, 41, 4431–
4434; (d) Schneider, C.; Reese, O. Angew. Chem., Int. Ed.
2000, 39, 2948–2950; (e) Takasu, K.; Ueno, M.; Ihara, M.
Tetrahedron Lett. 2000, 41, 2145–2148; (f) Mitsudera, H.;
Kakehi, A.; Kamimura, A. Tetrahedron Lett. 1999, 40,
7389–7392; (g) Arai, T.; Sasai, H.; Aoe, K.; Okamura,
K.; Date, T.; Shibasaki, M. Angew. Chem., Int. Ed. Engl.
1996, 35, 104–106; (h) Ihara, M.; Taniguchi, T.; Yamada,
M.; Tokunaga, Y.; Fukumoto, K. Tetrahedron Lett.
1995, 36, 8071–8074; (i) Ye, B.; Qiao, L.-X.; Zhang,
Y.-B.; Wu, Y.-L. Tetrahedron 1994, 50, 9061–9066; (j)
Ihara, M.; Taniguchi, T.; Makita, K.; Takano, M.;
1
(neat) 3492, 2969, 2925, 1712 cm−1; H NMR (CDCl3) l
1.36 (3H, d, J=6.4 Hz), 2.24 (3H, s), 2.55 (1H, dd,
J=8.8, 10.6 Hz), 3.61 (1H, d, J=10.6 Hz), 3.83 (3H, s),
4.42 (1H, dq, J=6.4, 8.8 Hz), 6.85 (2H, d, J=9.0 Hz),
7.28–7.43 (5H, m), 7.66 ( 1H, d, J=7.7 Hz); 13C NMR
(CDCl3) l 24.3, 32.2, 53.2, 55.5, 66.0, 67.8, 114.1, 122.4,
126.8, 127.9, 128.2, 129.0, 130.3, 133.1, 137.1, 163.0;
HRMS (FAB) calcd for C19H22NO5S 376.1219 (M+H+),
found 376.1246.
12. The chiral acceptor was prepared from the known (4S)-3-
(2,2-dimethyl-[1,3]dioxolan-4-yl)acrylic acid ethyl ester in
two steps: (1) reduction of the ester with diisobutylalu-
minum hydride in methylene chloride in 66% yield and
(2) oxidation of the allyl alcohol with activated man-
ganese dioxide in 93% yield.