3510
U. Asseline et al. / Bioorg. Med. Chem. 11 (2003) 3499–3511
us to identify the different peaks. Mass analysis results
confirmed the calculated mass values for each oligonu-
cleotide (Table 1).
N. T.; Helene, C. Proc. Natl. Acad. Sci. U.S.A. 1992, 89,
8631.
13. Miller, P. S.; Yano, J.; Yano, E.; Carrol, C.; Jayaraman,
K.; Ts’o, P. O. P. Biochemistry 1979, 18, 5134.
14. Asseline, U.; Thuong, N. T.; Helene, C. J. Biol. Chem.
1985, 260, 8936.
Tm measurements by UV absorption experiments
15. Lancelot, G.; Guesnet, J. L.; Asseline, U.; Thuong, N. T.
Biochemistry 1988, 27, 1265.
16. Durand, M.; Maurizot, J. C.; Asseline, U.; Barbier, C.;
Thuong, N. T.; Helene, C. Nucleic Acids Res. 1989, 17,
1823.
17. Hau, J. F.; Asseline, U.; Thuong, N. T. Tetrahedron Lett.
1991, 32, 2497.
18. Froehler, B. C.; Ng, P.; Matteucci, M. D. Nucleic Acids
Res. 1988, 16, 4831.
19. Ozaki, H.; Kitamura, M.; Yamana, K.; Shimidzu, T. Bull.
Chem. Soc. J. 1990, 63, 1929.
20. Fathi, R.; Huang, Q.; Coppola, G.; Delaney, W.; Teasdale,
R.; Krieg, A. M.; Cook, A. F. Nucl. Acids Res. 1994, 22, 5416.
21. Letsinger, R. L.; Singman, C. N.; Histand, G.; Salunkhe,
M. J. Am. Chem. Soc. 1988, 110, 4470.
22. Jung, P. M.; Histand, G.; Letsinger, R. L. Nucleosides and
Nucleotides 1994, 13, 1597.
23. Horn, T.; Chatuverdi, S.; Balasubramanian, T. N.; Let-
singer, R. L. Tetrahedron Lett. 1996, 37, 743.
24. Chatuverdi, S.; Horn, T.; Letsinger, R. L. Nucleic Acids
Res. 1996, 24, 2318.
Changes in absorbance with temperature of 1 mM tri-
plexes in a 10 mM sodium cacodylate buffer (pH 5.5, or
pH 7) containing 5 mM MgCl2 and 140 mM KCl were
measured at l=260 nm in a Uvikon 941 cell changer
spectrophotometer equipped with a Huber PD 415
temperature programer connected to a cryothermostat
ministat circulating water bath (Huber). A cacodylate
buffer was chosen due to its limited dependence of pH
on temperature. The temperature was regulated at a rate
of 0.2 ꢁC/min from 0 to 80 ꢁC. To monitor triplex-to-
duplex transition, the samples were first heated and then
cooled. Oligonucleotide concentrations were 1 mM of
the circular duplex, and either 1 or 1.2 mM of the third
strand (see sequences in Fig. 2). The absorbance at 260
and 340 nm was recorded every 5 min. Corrections for
spectrophotometric instability were made by substracting
the absorbance at 340 nm from that at 260 nm. The Tm
values were determined using the first derivative. Esti-
mated accuracy of the melting temperature is ꢂ0.5 ꢁC.
25. Laurent, A.; Naval, M.; Debart, F.; Vasseur, J. J.; Ray-
ner, B. Nucleic Acids Res. 1999, 27, 4151.
26. Ehrenmann, F.; Vasseur, J.-J.; Debart, F. Nucleosides
Nucleotides Nucleic Acids 2001, 20, 797.
Circular dichroism experiments
Cd measurements were carried out on a Jobin Yvon
Mark IV dichrograph in optical cells with a pathlength
of 0.5 or 1 cm. Each cd spectrum was an average of two
scans with the buffer blank subtraction. The concen-
tration used to calculate the cd intensity was that of the
nucleotide unit.
27. Dagle, J. M.; Weeks, D. L. Nucleic Acids Res. 1996, 24,
2143.
28. De Mesmaeker, A.; Waldner, A.; Lebreton, J.; Hoffmann,
P.; Fritsch, V.; Wolf, R. M.; Freier, S. M. Angew. Chem. Ed.
Engl. 1994, 33, 226.
29. Waldner, A.; De Mesmaeker, A.; Lebreton, J.; Fritsch, V.;
Wolf, R. M. Synlett. 1994, 57.
30. Morvan, F.; Sangvhi, Y. S.; Perbost, M.; Vasseur, J.-J.;
Bellon, L. J. Am. Chem. Soc. 1996, 118, 255.
31. Dempcy, R. O.; Browne, K. A.; Bruice, T. C. J. Am.
Chem. Soc. 1995, 117, 6140.
32. Linkletter, B. A.; Bruice, T. C. Bioorg. Med. Chem. Lett.
1998, 8, 1285.
Acknowledgements
We thank H. Labbe (Centre de Biophysique Molecu-
laire, Orleans) for recording NMR spectra and C. Bure
(Centre de Biophysique Moleculaire, Orleans) for run-
ning the electrospray mass spectroscopy.
33. Linkletter, B. A.; Szabo, I. E.; Bruice, T. C. Nucl. Acids
Res. 2001, 29, 2370.
34. Linkletter, B. A.; Bruice, T. C. Bioorg. and Med. Chem.
2000, 8, 1893.
35. Arya, D. P.; Bruice, T. C. J. Am. Chem. Soc. 1998, 120,
6619.
References and Notes
36. Kojima, N.; Szabo, I. E.; Bruice, T. C. Tetrahedron 2002,
58, 867.
1. Christopoulos, T. Anal. Chem. 1999, 71, 425R.
2. Seeman, N. C. TIBTECH 1999, 17, 437.
3. Praseuth, D.; Guieysse, A. L.; Helene, C. Biochem. Biophys.
Acta 1999, 1489, 181.
4. Ma, D. D. F.; Rede, T.; Naqvi, N. A.; Cook, P. D. Biotech.
Ann. Rev. 2000, 5, 155.
37. Hanvey, J. C.; Peffer, N. C.; Bisi, J. E.; Thomson, S. A.;
Cadilla, R.; Josey, J. A.; Ricca, D. J.; Hassman, C. F.; Bon-
ham, M. A.; Au, K. G.; Carter, S. G.; Bruckenstein, D. A.;
Boyd, A. L.; Noble, S. A.; Babiss, L. E. Science 1992, 258,
1481.
5. Fox, K. R. Curr. Med. Chem. 2000, 7, 17.
6. Breaker, R. R. Chem. Rev. 1997, 97, 371.
7. Le Doan, T.; Perrouault, L.; Praseuth, D.; Habhoub, N.;
Decout, J. L.; Thuong, N. T.; Lhomme, J.; Helene, C. Nucleic
Acids Res. 1987, 15, 7749.
38. Hickman, D. T.; King, P. M.; Slater, J. M.; Cooper, M. A.;
Micklefield, J. Nucleotides, Nucleosides and Nucleic Acids
2001, 20, 1169.
39. Rumney IV, S.; Kool, E. T. J. Am. Chem. Soc. 1995, 117,
5635.
8. Moser, H. E.; Dervan, P. B. Science 1987, 238, 645.
9. Cooney, M.; Czernuszewicz, G.; Postel, E. H.; Flint, S. J.;
Hogan, M. E. Science 1988, 241, 546.
10. Pilch, D. S.; Levensen, C.; Shafer, R. H. Biochemistry
1991, 30, 6081.
40. Bannwarth, W.; Dora, A.; Iaiza, P.; Pannekouke, X. Helv.
Chim. Acta 1994, 77, 182.
41. O’Sullivan, M. C.; Dalrymple, D. Tetrahedron Lett. 1985,
36, 3451.
42. Seela, F.; Kretschmer, U. J. Org. Chem. 1991, 56, 3861.
43. Sinha, N. D.; Biernat, J.; McManus, J.; Koster, H. Nucleic
Acids Res. 1984, 12, 4539.
11. Beal, P. A.; Dervan, P. B. Science 1991, 251, 1360.
12. Giovannangeli, C.; Rougee, M.; Garestier, T.; Thuong,