1128
M. Maletic et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1125–1128
In conclusion, we developed a new synthetic strategy for
the combinatorial or parallel synthesis of muramic acid
glycopeptides as potential inhibitors of the mur- path-
way enzymes. The strategy involves reversible attach-
ment of the sugars through the 4,6-diol to the resin
using an acid-sensitive linker. This efficient methodol-
ogy for immobilizing sugars to a resin, which reduces
the number of synthesis steps prior to attachment,
makes this strategy very appealing for immobilizing not
very readily available sugar scaffolds. Work is in pro-
gress to miniaturize the mur-pathway enzyme assay and
to develop usable tagging methodology that will facil-
itate identification of compounds on bead. Coupled
with these powerful technological tools, this synthetic
strategy could allow for identification of novel inhibi-
tors for some of the mur-pathway enzymes.
6. (a) Furka, A.; Sebestyen, F.; Asgedom, M.; Dibo, G. Int. J.
Pept. Protein Res. 1991, 37, 487. (b) Sebestyen, F.; Dibo, G.;
Kovacs, A.; Furka, A. Bioorg. Med. Chem. Lett. 1993, 3, 413.
(c) Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.;
Kazmierski, W. M.; Knapp, R. J. Nature 1991, 354, 82. (d)
Ohlmeyer, M. H. J.; Swanson, R. N.; Dillard, L. W.; Reader,
J. C.; Asouline, G.; Kobayashi, R.; Wigler, M.; Still, W. C.
Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 10922.
7. An, H.; Cook, D. P. Chem. Rev. 2000, 100, 3311 and refer-
ences therein.
8. Schullek, J. R.; Butler, J. H.; Ni, Z.-J.; Chen, D.; Yuan, Z.
Analytical Biochem. 1997, 246, 20.
9. Hanessian, S.; Ogawa, T.; Guindon, Y.; Kamennof, J.;
Roy, R. Carbohydr. Res. 1974, 38, C15.
10. (a) For recent use of benzylidene acetal linkers see:Ha-
nessian, S.; Huynh, H. K. Synlett 1999, 102. (b) Lampe,
T. F. J.; Weitz-Schmidt, G.; Wong, C.-H. Angew. Chem. Int.
Ed. Engl. 1998, 37, 1707. (c) Hamachi, I.; Kiyonaka, S.; Shin-
kai, S. Tetrahedron Lett. 2001, 42, 6142.
11. Our solid support was: LCC Engineering aminomethyl
polystyrene, uniform beads, with 1.1 mmol/g (4.4 nmol/bead)
loading.
Acknowledgements
We thank Dr. Yusheng Xiong for developing the meth-
odology for characterization of the libraries.
12. (a) Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook,
P. I. Anal. Biochem. 1970, 34, 595. (b) Sarin, V. K.; Kent,
S. B. H.; Tam, J. P.; Merrifield, R. B. Anal. Biochem. 1981,
117, 147.
References and Notes
13. The library was characterized by single bead cleavage of
compounds followed by LC/MS analysis. Beads were picked,
suspended in 50 mL of cleavage cocktail for 15 min, then dried
under a nitrogen stream, resuspended in 15 mL of acetonitrile
and analyzed by LC/MS. Individual cleavage of 20 beads
resulted in finding all of the nine desired compounds. The
HPLC trace of each compound confirmed the high purity
(>90%) or each analogue.
14. Forty milligrams of resin were treated with 15%TFA in
methylene chloride for 10 min. The resin was filtered off and
washed with three washes of methylene chloride and acetoni-
trile. The filtrates were combined and solvent was removed
under reduced pressure to yield 9 mg of oily residue (53%
yield).
15. While this conversion could be followed by IR (observing
the disappearance of the carbonyl stretch) on the Wang alde-
hyde resin, it could not be followed by the same method on the
methyl amino resin due to the presence of the amide bond.
Instead, the optimized conditions for the Wang aldehyde resin
were applied to the aminomethyl polystyrene resin.
16. Loading was assessed gravimetrically, by weighing the
cleaved product from the known amount of resin (assum-
ing 1.1 mmol/g loading) and also by comparison of clea-
vage product HPLC trace with the cleavage product of
resin 8.
1. Park, J. T.; Strominger, J. L. Science 1957, 125, 99.
2. (a) Gegnas, L. D.; Waddell, S. T.; Chabin, R. M.; Reddy,
S.; Wong, K. K. Bioorg. Med. Chem. Lett. 1998, 8, 1643. (b)
Tanner, M. E.; Vaganay, S.; van Heijenoort, J.; Blanot, D. J.
Org. Chem. 1996, 61, 1756. (c) Victor, F.; Tebbe, M. J.; Birch,
G. B.; Smith, M. C.; Letourneau, D. L.; Wu, C. E. Abstract
1276, 39th ICAAC (Interscience Conference on Antimicrobial
Agents and Chemotherapy), San Francisco, CA, Sept 26–29,
1999; p 330. (d) Gobec, S.; Urleb, U.; Auger, G.; Blanot, D.
Pharmazie 2001, 56, 295.
3. Bugg, T.; Walsh, C. T. Nat. Prod. Rep. 1992, 9, 199.
4. Wong, K. K.; Kuo, D. W.; Chabin, R. M.; Fournier, C.;
Gegnas, L. D.; Waddell, S. T.; Marsilio, F.; Leiting, B.; Pom-
pliano, D. L. J. Am. Chem. Soc. 1998, 120, 13527.
5. (a) Gallop, M. A.; Barrett, R. W.; Dower, W. P.; Fodor,
S. P. A.; Gordon, E. M. J. Med. Chem. 1994, 37, 1233. (b)
Gordon, E. M.; Barrett, R. W.; Dower, W. P.; Fodor, S. P. A.;
Gallop, M. A. J. Med. Chem. 1994, 37, 1385. (c) Terret, N. K.;
Gardner, M.; Gordon, D. W.; Kobylecki, R. J.; Steele, J. Tet-
rahedron 1995, 51, 8135. (d) Ellman, J. A. Acc. Chem. Res.
1996, 29, 132. (e) Lam, K. S.; Lebl, M.; Krchnak, M. L. V.
Chem. Rev. 1997, 97, 411. (f) Nefzi, A.; Ostresh, J. M.;
Houghten, R. A. Chem. Rev. 1997, 97, 449.