Total Synthesis of the 2- and 3-Epimers of Dechloro-cyanobacterin
2223
on silica gel (CCl4-EtOAc, 9:1) to provide a second
crop of crystals.
104.47, 108.31, 109.43, 113.89, 122.04, 125.93,
130.06, 131.51, 146.44, 147.83, 151.43, 158.75,
174.37; IR nmax (CHCl3) cm-1: 3025, 1803, 1735,
1687, 1611, 1512, 1491, 1448, 1294, 1252, 1213, 1179,
1102, 1042, 995, 940, 863, 786, 769, 751, 739. Anal.
(2S,3R,4Z )-3-Hydroxy-5-(4-methoxyphenyl)-(3,4-
methylenedioxybenzyl)-3-(1-methylethyl)-4-penten-
25
4-olide (
4
)
: 43.8
z
yield, mp 129–130
9
C, [
a
]
D
1
+
46.1
9(
c
0.98, CHCl3); H-NMR (CDCl3)
d
: 0.95
Found: C, 69.66; H, 6.10z. Calcd. for C23H24O6: C,
=
=
2.9 Hz,
(3H, d,
J
2.9 Hz, C
1H, m, (CH3)C
), 2.86–2.92 (2H, m, Ar1–C
Ar1–CH2C ), 3.13 (1H, dd, 8.3, 17.3 Hz,
2), 3.82 (3H, s, OC 3), 5.68 (1H, s,
), 5.86 (1H, s, O–C 2–O), 5.90 (1H, s,
), 6.78 (1H, s,
8.8 Hz, Ar2– ), 7.51 (2H,
); H-NMR (acetone-d6 : 0.85
H
3), 0.96 (3H, d,
, 2.03 (1H, s,
2CH and
J
69.68; H, 6.10z.
C
H
3), 1.88–2.02
s
H t
–O
H
H
References
H
J
=
1) Mason, C., Edwards, K., Carlson, R., Pignatello, J.,
Gleason, F., and Wood, J., Isolation of chlorine-con-
taining antibiotic from the freshwater cyanobacteri-
Ar1–C
Ar2–C
H
H
H
H
O–C
H
H
2–O), 6.72 (2H, s, Ar1–H
um Scytonema hofmanni
. Science, 215, 400–402
=
Ar1–
), 6.87 (2H, d,
J
H
(1982).
1
d,
J
=
8.8 Hz, Ar2–
H
) d
2) Gleason, F., and Case, D., Activity of the natural
algicide, cyanobacterin, on angiosperms. Plant Phys-
iol., 80, 834–837 (1986).
3) Gleason, F., Case, D., Sipprell, K., and Magnuson,
T., EŠect of the natural algicide, cyanobacterin, on a
herbicide-resistant mutant of Anacystis nidulans R2.
Plant Science, 46, 5–10 (1986).
4) Jong, T., Williard, P., and Porwoll, J., Total synthe-
sis and X-ray structure determination of cyanobacte-
rin. J. Org. Chem., 49, 735–736 (1984).
5) Gleason, F., and Paulson, L., Site of action of the
natural algicide, cyanobacterin, in the blue-green
=
=
4.4 Hz,
(3H, d,
J
4.4 Hz, C
H
3), 0.86 (3H, d,
J
C
H
3), 1.92–2.01
s
1H, m, (CH3)C
H
t
, 2.85 (1H, dd,
=
=
=
J
8.3, 14.2 Hz, Ar1–C
8.3 Hz, Ar1–CH2C
14.2 Hz, Ar1–C 2), 4.71 (1H, s, –O
Ar2–C ), 5.92 (1H, s, O–C 2–O), 5.93 (1H, s,
O–C 2–O), 6.72–6.80 (2H, m, Ar1– ), 6.89–6.91
(1H, m, Ar1– 8.8 Hz, Ar2– ),
); 13C-NMR (CDCl3)
: 16.44, 16.86, 32.93, 38.19, 47.24, 55.29, 81.30,
H
2), 2.97 (1H, dd,
J
J
5.4,
H
), 3.17 (1H, dd,
5.4,
H
H ), 5.81 (1H, s,
H
H
H
H
=
H
), 6.92 (2H, d,
J
H
=
8.8 Hz, Ar2–H
7.51 (2H, d,
d
J
100.99, 104.51, 108.36, 109.43, 113.91, 122.06,
125.94, 130.09, 131.49, 146.50, 147.89, 151.44,
158.79, 174.34; IR nmax (CHCl3) cm-1: 3025, 1803,
1735, 1687, 1611, 1516, 1491, 1448, 1294, 1256, 1213,
1179, 1106, 1042, 995, 944, 863, 786, 769, 751, 739.
(2R,3S,4Z )-3-Hydroxy-5-(4-methoxyphenyl)-(3,4-
alga, Synechococcus sp. Arch. Microbiol.
273–277 (1984).
, 138,
6) Gleason, F. K., Thoma, W. J., and Carlson, J. L.,
Cyanobacterin and analogs: structure and activity
relationships of a natural herbicide. In ``Progress in
Photosynthesis Research'' vol. 3, ed. Biggins, J.,
Martinius NijhoŠ, The Hague, pp. 11763–11766
(1987).
7) Haga, Y., Okazaki, M., and Shuto, Y., Systematic
strategy for the synthesis of cyanobacterin and its
stereoisomers. 1. Asymmetric total synthesis of
dechloro-cyanobacterin and its enantiomer. Biosci.
Biotechnol. Biochem., 67, 2183–2193 (2003).
8) Evans, D. A., Bartroli, J., and Shih, T. L., Enan-
tioselective aldol condensations. 2. Erythro-selective
chiral aldol condensation via boron enolates. J. Am.
Chem. Soc., 103, 2127–2129 (1981).
9) Evans, D. A., Nelson, J. V., Vogel, E., and Taber, T.
R., Steroselective aldol condensation via boron
enolates. J. Am. Chem. Soc., 103, 3099–3111 (1981).
10) Walker, M. A., and Heathcock, C. H., Extending the
scope of the Evans aldol reactions: preparation of
anti and ``non-Evans'' syn aldols. J. Org. Chem., 56,
5747–5750 (1991).
11) Ho, T.-L., Conformations. In ``Stereoselectivity in
Synthesis'', John Wiley & Sons, Inc., New York, pp.
3–6 (1999).
methylenedioxybenzyl)-3-(1-methylethyl)-4-penten-
25
4-olide (
5
)
: 40.3
z
yield, mp 130
9
d
C, [
a
]
-
46.7
9
J
D
1
(
c
3.45, CHCl3); H-NMR (CDCl3)
2.0 Hz, C 3), 0.95 (3H, d,
1.93–2.01 1H, m, (CH3)C , 2.13 (1H, s, –O
2.85–2.93 (2H, m, Ar1–CH2C and Ar1–C 2CH),
3.12 (1H, dd, 8.8, 16.9 Hz, Ar1–C 2), 3.81 (3H,
s, OC ), 5.85 (1H, s,
: 0.94 (3H, d,
=
H
J
=
2.4 Hz, C
H
3),
s
H
t
H
H ),
H
J
=
H
H
3), 5.68 (1H, s, Ar2–C
H
O–C
H
H
2–O), 5.89 (1H, s, O–C
), 6.78 (1H, s, Ar1–
), 7.50 (2H, d,
1H-NMR (acetone-d6
: 0.85 (3H, d,
H
2–O), 6.71 (2H, s,
=
H
Ar1–
H
), 6.86 (2H, d,
J
=
8.8 Hz, Ar2–
H
J
8.8 Hz, Ar2–
);
4.4 Hz,
3), 2.05–2.14 1H,
)
=
d
J
=
C
H
3), 0.86 (3H, d,
m, (CH3)C , 2.85 (1H, dd,
Ar1–C 2), 2.97 (1H, dd,
Ar1–CH2C ), 3.17 (1H, dd,
Ar1–C 2), 4.71 (1H, s, –O
5.92 (1H, s, O–C 2–O), 5.93 (1H, s, O–C
6.72–6.80 (2H, m, Ar1– ), 6.89–6.91 (1H, m,
8.8 Hz, Ar2– ), 7.51 (2H,
); 13C-NMR (CDCl3)
: 16.41,
16.85, 32.85, 38.14, 47.22, 55.26, 81.23, 100.95,
J
4.4 Hz, C
H
s
H
t
J
=
=
J
=
J
8.1, 14.2 Hz,
5.9, 8.1 Hz,
5.9, 14.2 Hz,
H
H
H
H
), 5.81 (1H, s, Ar2–C
H ),
2–O),
H
H
H
=
Ar1–
H
), 6.92 (2H, d,
8.8 Hz, Ar2–
J
H
12) Belil, C., Pascual, J., and Serratosa, F., Intramolecu-
lar cyclization of alkylpropargylidenemalonic acids.
Tetrahedron Lett., 2701–2708 (1964).
=
d,
J
H
d