Organocatalytic Biomimetic Reductions
aldehydes and ketones via iminium and enamine formation
represents an important breakthrough in modern asymmetric
synthesis, and a large variety of functionalizations, such as
C-C,5 C-N,6 C-O,7 C-S,8 and C-X (X ) halogen)9 bond-
forming reactions among others, has been developed. The
combination of two or more organocatalytic reactions with a
proper synthetic plan utilizing one or more organocatalysts in
a one-pot synthesis delivers complex products, which is pres-
ently being developed as a new strategy in cascade reactions.
A natural amino acid, proline, is certainly part of this noble
catalyst club, and in the recent past, it has been defined as a
universal catalyst and a simple enzyme because of its high utility
especially in enantioselective aldol,10 Mannich,11 amination,6
and R-aminoxylation reactions.7
As part of our program to engineer direct organocatalytic
cascade or multicomponent reactions,4a-e herein we report
the first organocatalytic asymmetric chemoselective direct
cascade Knoevenagel/hydrogenation (K/H) and Knoevenagel/
hydrogenation/Robinson annulation (K/H/RA) reactions that
produce very useful drug synthons, 2-alkyl-cyclohexane-1,3-
diones 7 and Wieland-Miescher (W-M) ketone analogues 10
from commercially available cyclohexane-1,3-diones 1,
aldehydes 2, Hantzsch ester 3, methyl vinyl ketone 9, and amino
acid 4 as shown in Scheme 1. 2-Alkyl-cyclohexane-1,3-diones
7 and W-M ketone analogues 10 are attractive intermediates
in the synthesis of natural products and in medicinal chemistry,12
while 2-alkyl-cyclohexane-1,3-diones 7 have a broad utility
in pharmaceutical chemistry13 and are excellent starting mat-
erials in the natural product synthesis as shown in Chart 1.
Hence, their preparation has continued to attract considerable
synthetic interest in developing new methods for their synthe-
ses.14
(3) For recent reviews on organocatalysis, see: (a) Notz, W.; Tanaka,
F.; Barbas, C. F., III. Acc. Chem. Res. 2004, 37, 580-591. (b) List, B.
Acc. Chem. Res. 2004, 37, 548-557. (c) Cordova, A. Acc. Chem. Res. 2004,
37, 102-112. (d) Dalko, P. L.; Moisan, L. Angew. Chem., Int. Ed. 2004,
43, 5138-5175. (e) Berkessel, A.; Groger, H. Asymmetric Organocatalysis;
WCH: Weinheim, 2004. (f) Seayed, J.; List, B. Org. Biomol. Chem. 2005,
3, 719-724. (g) Jarvo, E. R.; Scott, J. M. Tetrahedron 2002, 58, 2481-
2495. (h) List, B. Tetrahedron 2002, 58, 5573-5590. (i) List, B. Synlett
2001, 11, 1675-1686. (j) See also: Acc. Chem. Res. 2004, 37 (8). Special
edition devoted to asymmetric organocatalysis.
(4) For recent papers on organocatalytic cascade or domino reactions
from our group, see: (a) Ramachary, D. B.; Ramakumar, K.; Kishor, M.
Tetrahedron Lett. 2005, 46, 7037-7042. (b) Ramachary, D. B.; Kishor,
M.; Ramakumar, K. Tetrahedron Lett. 2006, 47, 651-656. (c) Ramachary,
D. B.; Kishor, M.; Babul Reddy, G. Org. Biomol. Chem. 2006, 4, 1641-
1646. (d) Ramachary, D. B.; Babul Reddy, G. Org. Biomol. Chem. 2006,
4, 4463-4468. (e) Ramachary, D. B.; Ramakumar, K.; Narayana, V. V. J.
Org. Chem. 2007, 72, 1458-1463. From other research groups, see: (f)
Chowdari, N. S.; Ramachary, D. B.; Cordova, A.; Barbas, C. F., III.
Tetrahedron Lett. 2002, 43, 9591-9595. (g) Chowdari, N. S.; Ramachary,
D. B.; Barbas, C. F., III. Org. Lett. 2003, 5, 1685-1688. (h) Ramachary,
D. B.; Chowdari, N. S.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2003,
42, 4233-4237. (i) Ramachary, D. B.; Chowdari, N. S.; Barbas, C. F., III.
Synlett 2003, 12, 1910-1914. (j) Ramachary, D. B.; Anebouselvy, K.;
Chowdari, N. S.; Barbas, C. F., III. J. Org. Chem. 2004, 69, 5838-5849.
(k) Ramachary, D. B.; Barbas, C. F., III. Chem.sEur. J. 2004, 10, 5323-
5331. (l) Ramachary, D. B.; Barbas, C. F., III. Org. Lett. 2005, 7, 1577-
1580. (m) Yang, J. W.; Hechavarria Fonseca, M. T.; List, B. J. Am. Chem.
Soc. 2005, 127, 15036-15037. (n) Huang, Y.; Walji, A. M.; Larsen, C.
H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051-15053. (o)
Halland, N.; Aburel, P. S.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2004,
43, 1272-1277. (p) Marigo, M.; Schulte, T.; Franzen, J.; Jørgensen, K. A.
J. Am. Chem. Soc. 2005, 127, 15710-15711. (q) Brandau, S.; Maerten, E.;
Jorgensen, K. A. J. Am. Chem. Soc. 2006, 128, 14986-14991. (r) Marigo,
M.; Bertelsen, S.; Landa, A.; Jorgensen, K. A. J. Am. Chem. Soc. 2006,
128, 5475-5479. (s) Carlone, A.; Marigo, M.; North, C.; Landa, A.;
Jorgensen, K. A. Chem. Commun. 2006, 4928-4930. (t) Enders, D.; Huettl,
M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861-863. (u) Enders,
D.; Huettl, M. R. M.; Runsink, J.; Raabe, G.; Wendt, B. Angew. Chem.,
Int. Ed. 2007, 46, 467-469. (v) Zhao, G.-L.; Liao, W.-W.; Cordova, A.
Tetrahedron Lett. 2006, 47, 4929-4932. (w) Rios, R.; Sunden, H.; Ibrahem,
I.; Zhao, G.-L.; Eriksson, L.; Cordova, A. Tetrahedron Lett. 2006, 47, 8547-
8551. (x) Rios, R.; Sunden, H.; Ibrahem, I.; Zhao, G.-L.; Cordova, A.
Tetrahedron Lett. 2006, 47, 8679-8682. (y) Wang, W.; Li, H.; Wang, J.;
Zu, L. J. Am. Chem. Soc. 2006, 128, 10354-10355. (z) Tejedor, D.;
Gonzalez-Cruz, D.; Santos-Exposito, A.; Marrero-Tellado, J. J.; de Armas,
P.; Garcia-Tellado, F. Chem.sEur. J. 2005, 11, 3502-3510. (aa) Rueping,
M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45,
3683-3686.
(5) (a) Ramasastry, S. S. V.; Zhang, H.; Tanaka, F.; Barbas, C. F., III.
J. Am. Chem. Soc. 2007, 129, 288-289. (b) Mase, N.; Watanabe, K.; Yoda,
H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006,
128, 4966-4967. (c) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe,
K.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 734-735.
(d) Mase, N.; Rajeswari, T.; Tanaka, F.; Barbas, C. F., III. Org. Lett. 2004,
6, 2527-2530. (e) Mase, N.; Tanaka, F.; Barbas, C. F., III. Angew. Chem.,
Int. Ed. 2004, 43, 2420-2423. (f) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.;
Gong, L.-Z.; Qiao, A.; Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003,
125, 5262-5263. (g) Pidathala, C.; Hoang, L.; Vignola, N.; List, B. Angew.
Chem., Int. Ed. 2003, 42, 2785-2787. (h) Melchiorre, P.; Jorgensen, K. A.
J. Org. Chem. 2003, 68, 4151. (i) Halland, N.; Aburel, P. S.; Jorgensen, K.
A. Angew. Chem., Int. Ed. 2003, 42, 661. (j) Brown, S. P.; Goodwin, N.
C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 1192. (k) Raj, M.;
Vishnumaya Ginotra, S. K.; Singh, V. K. Org. Lett. 2006, 8, 4097-4099.
(l) Mosse, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett.
2006, 8, 2559-2562.
Surprisingly, there is no direct method for the synthesis of
useful 2-alkyl-cyclohexane-1,3-diones 7, and only two-step
methods are known to prepare them.14 Recently, Paquette et al.
developed the two-step synthesis of 2-alkyl-cyclohexane-1,3-
diones 7 in moderate to good yields via an in situ protection
and deprotection sequence on 2-alkylidene-1,3-diones 5 with
(7) (a) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247-4250. (b)
Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2003, 125, 10808-10809. (c) Momiyama, N.; Torii, H.;
Saito, S.; Yamamoto, H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5374-
5378. (d) Bogevig, A.; Sundeen, H.; Cordova, A. Angew. Chem., Int. Ed.
2004, 43, 1109-1112. (e) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji,
M. Angew. Chem., Int. Ed. 2004, 43, 1112-1115. (f) Merino, P.; Tejero,
T. Angew. Chem., Int. Ed. 2004, 43, 2995-2997. (g) Hayashi, Y.;
Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett. 2003, 44, 8293-
8296. (h) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Hibino, K.; Shoji, M. J.
Org. Chem. 2004, 69, 5966-5973. (i) Co´rdova, A.; Sunde´n, H.; Bøgevig,
A.; Johansson, M.; Himo, F. Chem.sEur. J. 2004, 10, 3673-3684. (j)
Yamamoto, Y.; Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2004,
126, 5962-5963. (k) Mathew, S. P.; Iwamura, H.; Blackmond, D. G. Angew.
Chem., Int. Ed. 2004, 43, 3317-3321. (l) Wang, W.; Wang, J.; Hao, L.;
Liao, L. Tetrahedron Lett. 2004, 45, 7235-7238. (m) Hayashi, Y.;
Yamaguchi, J.; Hibino, K.; Sumiya, T.; Urushima, T.; Shoji, M.; Hashizume,
D.; Koshino, H. AdV. Synth. Catal. 2004, 346, 1435. (n) Cheong, P. H. Y.;
Houk, K. N. J. Am. Chem. Soc. 2004, 126, 13912-13913. (o) Joseph, J.;
Ramachary, D. B.; Jemmis, E. D. Org. Biomol. Chem. 2006, 4, 2685-
2689. (p) Ramachary, D. B.; Rumpa, M. Tetrahedron Lett. 2006, 47, 7689-
7693.
(8) (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 794-797. (b) Franzen, J.; Marigo, M.;
Fielenbach, D.; Wabnitz, T. C.; Kjaersgaard, A.; Jørgensen, K. A. J. Am.
Chem. Soc. 2005, 127, 18296-18304.
(9) For fluorination, see: (a) Steiner, D. D.; Mase, N.; Barbas, C. F.,
III. Angew. Chem., Int. Ed. 2005, 44, 3706-3710. (b) Beeson, T. D.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 8826-8828. (c) Enders,
D.; Huttl, M. R. M. Synlett 2005, 991-993. (d) Marigo, M.; Fielenbach,
D.; Braunton, A.; Kjærsgaard, A.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2005, 44, 3703-3706. For chlorination, see: (e) Brochu, M. P.; Brown,
S. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108-4109. (f)
Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.; Jørgensen, K. A. J.
Am. Chem. Soc. 2004, 126, 4790-4791. For bromination, see: (g) Bertelsen,
S.; Halland, N.; Bachmann, S.; Marigo, M.; Braunton, A.; Jørgensen, K.
A. Chem. Commun. 2005, 4821-4823.
(6) (a) Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 1790-1793. (b) List,
B. J. Am. Chem. Soc. 2002, 124, 5656-5657. (c) Vogt, H.; Vanderheiden,
S.; Brase, S. Chem. Commun. 2003, 2448-2449. (d) Suri, J. T.; Steiner,
D. D.; Barbas, C. F., III. Org. Lett. 2005, 7, 3885-3888. (e) Chowdari, N.
S.; Barbas, C. F., III. Org. Lett. 2005, 7, 867-870. (f) Iwamura, H.; Mathew,
S. P.; Blackmond, D. G. J. Am. Chem. Soc. 2004, 126, 11770-11771.
J. Org. Chem, Vol. 72, No. 14, 2007 5057