without any breaking of Ni–S bonds. Thus, introduction of a
single chelate in L1, rather than a polychelate thiolate as in the
the Darensbourg system,13 reduces the stability of the [Ni(L1)]
chelate. This increased lability of the NiS2P2 complex in our
case opens up new pathways for manipulating reactivity at S-
centres involving the breaking of labile Ni–S bonds. In
[Ni(L1)(dppe)], the lability of dppe allows the formation of a
pentanuclear nickel species. However, when the electron-
donating power of the phosphine is increased by changing from
dppe to dcpe, the Ni–P bond cleavage is inhibited and CH2Cl2
is activated leading to the formation of two [NiClSP2] centres.
Intriguingly, the splitting of CH2Cl2 by concerted attack of a
Lewis acidic metal centre and basic sulfur reveals a direct
analogy with one of the proposed mechanisms for heterolytic
cleavage of dihydrogen by [NiFe] hydrogenase.8,14
We thank the BBSRC (UK) and the University of Notting-
ham for funding, and the CVCP (ORS Awards Scheme) for a
studentship to Q.W. We also thank the EPSRC for the provision
of a diffractometer and EPSRC National Service for mass
spectrometry at the University of Wales, Swansea for mass
spectra.
Notes and references
‡
Crystallographic data for 1· 4CH2Cl2: C92H96Cl2Ni5P4S8·4CH2Cl2, M
= 2286.20, triclinic, a = 11.0330(7), b = 13.1947(8), c = 19.0517(12) Å,
a = 89.446(2), b = 82.054(2), g = 66.885(2)°, U = 2523.3(5) Å3, T =
150(2) K, space group P1, Z = 1, m (Mo–Ka) = 1.454 mm21, 15902 data
¯
Fig. 1 (upper) Molecular structure of 1; (lower) diagram showing the zig-
zag structural pattern of 1. Selected bond lengths (Å) and angles (°): Ni(1)–
S(3) 2.1813(9), Ni(1)–S(4) 2.1922(9), Ni(2)–S(1) 2.1874(10), Ni(2)–S(2)
2.2031(10), Ni(2)–S(3) 2.1840(10), Ni(2)–S(4) 2.2000(10), Ni(3)–P(1)
2.1616(10), Ni(3)–P(2) 2.1687(10), Ni(3)–S(1) 2.2343(10), Ni(3)–S(2)
2.2300(10), Ni(3)–Cl(1) 2.6217(10), Ni(1)…Ni(2) 2.7738(5), Ni(2)…Ni(3)
2.8552(6), S(3)–Ni(1)–S(4) 75.95(3), S(1)–Ni(2)–S(3) 173.26(4), S(3)–
Ni(2)–S(4) 75.73(4), S(1)–Ni(2)–S(4) 98.38(4), S(3)–Ni(2)–S(2) 96.55(4),
S(1)–Ni(2)–S(2) 88.98(4), S(2)–Ni(2)–S(4) 170.62(4), Ni(1)–Ni(2)–Ni(3)
176.30(2), P(1)–Ni(3)–P(2) 84.16(4), P(1)–Ni(3)–S(2) 165.17(4), P(2)–
Ni(3)–S(2) 91.44(4), P(1)–Ni(3)–S(1) 93.83(4), P(2)–Ni(3)–S(1),
166.42(4), S(1)–Ni(3)–S(2) 87.13(4), P(1)–Ni(3)–Cl(1) 90.17(4), P(2)–
Ni(3)–Cl(1) 94.27(4), S(2)–Ni(3)–Cl(1) 104.30(4), S(1)–Ni(3)–Cl(1)
99.17(4).
collected, 11126 unique (Rint = 0.019). Final R1 [I > 2s(I)] = 0.0463, wR2
[all data] = 0.145.
Crystallographic data for 2·4CH2Cl2: C73H122Cl2Ni2P4S4·4CH2Cl2, M =
1779.85, monoclinic, a = 21.971(3), b = 17.011(2), c = 23.878(3) Å, b =
92.151(2)°, U = 8918(4) Å3, T = 150(2) K, space group C2/c, Z = 4, m
(Mo–Ka) = 0.926 mm21, 22072 data collected, 10528 unique (Rint
0.030). Final R1 [I > 2s(I)] = 0.0416, wR2 [all data] = 0.113.
=
suppdata/cc/b3/b309523a/ for crystallographic data in .cif format.
1 C. A. Grapperhaus and M. Y. Darensbourg, Acc. Chem. Res., 1998, 31,
451.
2 (a) M. A. Halcrow and G. Christou, Chem. Rev., 1994, 94, 2421 and
references therein (b) S. C. Shoner, M. M. Olmstead and J. A. Kovacs,
Inorg. Chem., 1994, 33, 7 and references therein.
3 M. Capdevila, P. González-Duarte, C. Foces-Foces, F. H. Cano and M.
Martinez-Ripoll, J. Chem. Soc., Dalton Trans., 1990, 143.
4 C. A. Grapperhaus, S. Poturovic and M. S. Mashuta, Inorg. Chem.,
2002, 41, 4309.
5 P. J. Farmer, J. H. Reibenspies, P. A. Lindahl and M. Y. Darensbourg,
J. Am. Chem. Soc., 1993, 115, 4665.
6 D. Sellmann, M. Waeber, H. Binder and R. Z. Boese, Naturforsch., B:
Chem. Sci., 1986, 41b, 1541.
7 S. S. Oster, R. J. Lachicotte and W. D. Jones, Inorg. Chim. Acta, 2002,
330, 118.
8 (a) A. Volbeda, M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey and
J. C. Fontecilla-Camps, Nature, 1995, 373, 580; (b) A. Volbeda, E.
Garcia, C. Piras, A. L. deLacey, V. M. Fernandez, E. C. Hatchikian, M.
Frey and J. C. Fontecilla-Camps, J. Am. Chem. Soc., 1996, 118,
12989.
9 G. A. Bowmaker, P. D. W. Boyd and G. K. Campbell, Inorg. Chem.,
1982, 21, 2403.
10 T. Sheng, X. Wu, W. Zhang, Q. Wang, X. Gao and P. Lin, Chem.
Comm., 1998, 263.
11 (a) M. Zhou, C-F. Lam, K. F. Mok, P-H. Leung and T. S. Andy Hor, J.
Organomet. Chem., 1994, 476, C32; (b) C. Tejel, M. A. Ciriano, L. A.
Oro, A. Tiripicchio and F. Ugozzoli, Organometallics, 2001, 20,
1676.
12 B. S. Snyder, C. P. Rao and R. H. Holm, Aust. J. Chem., 1986, 39,
963.
13 J. A. Bellefeuille, C. A. Grapperhaus, A. Derecskei-Kovacs, J. H.
Reibenspies and M. Y. Darensbourg, Inorg. Chim. Acta, 2000, 300,
73.
14 (a) A. L. DeLacey, E. C. Hatchikian, A. Volbeda, M. Frey, J. C.
Fontecilla-Camps and V. M. Fernandez, J. Am. Chem. Soc., 1997, 119,
7181; (b) D. Sellmann, G. H. Rackelmann and F. W. Heinemann, Chem.
Eur. J., 1997, 3, 2071; (c) D. Sellmann, F. Geipel and M. Moll, Angew.
Chem., Int. Ed., 2000, 39, 561.
Fig. 2 Molecular structure of 2. Selected bond lengths (Å) and angles (°):
Ni–P(1) 2.1652(8), Ni–P(2) 2.1796(8), Ni–S(1) 2.2042(8), Ni–Cl
2.2170(8), S(2)–C(61) 1.803(3), P(1)–Ni–P(2) 88.65(3), P(1)–Ni–S(1)
88.40(3), P(2)–Ni–S(1) 175.66(3), P(1)–Ni–Cl 174.02(3), P(2)–Ni–Cl
85.45(3), S(1)–Ni–Cl 97.54(3), S(2)–C(61)–S(2A) 117.6(3).
two displaced chloride ions binding each to a Lewis acid Ni
centre11 to yield 2.
It should be noted that when a solution of [Ni(L1)(dcpe)] in
CH2Cl2 is stirred at room temperature for 7 days under nitrogen,
[NiCl2(dcpe)] is obtained. This confirms that the Ni–S bonds
are labile in solution12 leading to potential reaction with CH2Cl2
and abstraction of chloride by Ni(II). It is interesting to note that
Darensbourg et al.13 have observed that the reaction of square-
planar Ni(II)-dithiolate [NiS2N2] complexes with alkyl halides
typically leads to metal-bound dithioether complexes, either as
a square planar dication or a halide bound octahedral complex
CHEM. COMMUN., 2003, 2776–2777
2777