Organic Letters
Letter
determined ΔG⧧ value of 28.5 kcal/mol (Table 2, entry 4)
followed by the p-Cl substrate (Table 2, entry 5) at 29.0 kcal/
mol. The methyl and phenyl substrates had almost identical
stabilities, with both compounds having a measured ΔG⧧ value
of ∼29.5 kcal/mol (Table 2, entries 6 and 7). Finally, the p-
OMe phenyl substrate proved to be the most stable substrate
investigated, with an experimental racemization energy barrier
of 29.8 kcal/mol (Table 2, entry 8). All experimentally
determined ΔG⧧ values demonstrate an excellent correlation
with computationally determined ΔG⧧ values, as highlighted in
Table 2 and Figure 6.
To further support the proposed dipolar mechanism, a
Hammett plot was constructed from data collected for the p-
OMe phenyl, phenyl, p-Cl phenyl, and p-CN phenyl
substituted cyclopropane compounds, as shown in Figure
7.19 The slope of the Hammett plot is consistent with buildup
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Stimulating discussions with Drs. Jason Tedrow and Narbe
Mardirossian (Amgen, Inc.) are gratefully acknowledged.
REFERENCES
■
(1) Vassar, R.; Bennett, B.; Babu-Khan, S.; Khan, S.; Mendiaz, E.;
Denis, P.; Teplow, D.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.;
Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.; Biere, A.;
Curran, E.; Burgess, T.; Louis, J.-C.; Collins, F.; Treanor, J.; Rogers,
G.; Citron, M. Science 1999, 286, 735−741.
(2) Low, J. D.; Bartberger, M. D.; Cheng, Y.; Whittington, D.; Xue,
Q.; Wood, S.; Allen, J. R.; Minatti, A. E. Bioorg. Med. Chem. Lett.
2018, 28, 1111−1115.
(3) Uno, H.; Terakawa, T.; Suzuki, H. B. Bull. Chem. Soc. Jpn. 1993,
66, 2730−2737.
(4) (a) Burrowes, T. G.; Jackson, W. R.; Faulks, S.; Sharp, I. Aust. J.
Chem. 1977, 30, 1855−1858. (b) Sheshenev, A. E.; Baird, M. S.;
Bolesov, I. G.; Shashkov, A. S. Tetrahedron 2009, 65, 10552−10564.
(c) Nesi, R.; Giomi, D.; Papaleo, S.; Dapporto, P.; Paoli, P. J. Chem.
Soc., Chem. Commun. 1990, 23, 1675−1676. (d) Baird, M. S.; Li, X.;
Al Dulayymi, J. R.; Kurdjukov, A. I.; Pavlov, V. A. J. Chem. Soc., Perkin
Trans. 1 1993, 21, 2507−2508.
(5) Baird, M. S.; Huber, F. A. M.; Clegg, W. Tetrahedron 2001, 57,
9849−9858.
(6) (a) Baldwin, J. E.; Keliher, E. J. J. Am. Chem. Soc. 2002, 124,
380−381. (b) von E. Doering, W.; Zhang, T-h.; Schmidt, E. K. G. J.
Org. Chem. 2006, 71, 5688−5693.
Figure 7. Hammett plot for aryl-substituted cyclopropanes.
(7) (a) Suhrada, C. P.; Houk, K. N. J. Am. Chem. Soc. 2002, 124,
8796−8797. (b) Doubleday, C.; Suhrada, C. P.; Houk, K. N. J. Am.
Chem. Soc. 2006, 128, 90−94.
of a negative charge (i.e., the existence of a partial aza-allyl-like
anion moiety) in the transition state for racemization. The
highly linear nature of the plot is supportive of a consistent
mode of racemization over a range of electronically diverse
substrates.
In conclusion, we have performed both experimental and
computational studies on the unexpected racemization of
enantiopure cyclopropyl fused isoxazoline compounds. Both
the experimental and computational data are consistent with
the racemization proceeding primarily through a transition
state possessing predominantly dipolar character. The stability
of these compounds can be significantly modulated by
temperature, choice of solvent, and substituents.
(8) Partridge, K. M.; Guzei, I. A.; Yoon, T. P. Angew. Chem., Int. Ed.
2010, 49, 930−934.
(9) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson,
G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.;
Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J.
V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.;
Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson,
T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.;
Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Throssell, K.; Montgomery, J. A., Jr., Peralta, J. E.; Ogliaro, F.;
Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov,
V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.
Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
(10) (a) CAS occupancies at CASSCF (4,4)/6-31+G* for 2-
difluoromethyl-bicyclo[3.1.0]hex-2-ene were found to be 1.91, 1.01,
0.99, and 0.09. (b) Inclusion of oxygen lone pairs in the active space
(i.e., CASSCF (6,5) for the transition structure for racemization of 1)
does not significantly change the form of the CAS orbitals nor the
elaborated discussion.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge at
Experimental procedures, characterization data, and
AUTHOR INFORMATION
Corresponding Authors
■
(11) Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.;
Grimme, S. Phys. Chem. Chem. Phys. 2017, 19, 32184−32215.
(12) Mardirossian, M.; Head-Gordon, M. Mol. Phys. 2017, 115,
2315−2372.
computational results.
berger).
ORCID
D
Org. Lett. XXXX, XXX, XXX−XXX