selective phosphodiesterase IV (PDE-IV) inhibitors (Figure
1). Selective PDE-IV inhibitors are currently under investiga-
for the rapid synthesis of 1,1-diarylalkyl derivatives in both
racemic and enantioenriched form.
We initially focused our efforts on developing a suitable
electrophile for alkylation by the lithium enolate of ethyl
4-pyridyl acetate using 1,1-diarylmethanols such as 1 (Scheme
2). Although racemic chloride and bromide derivatives 2a
Scheme 2 a
Figure 1. PDE-IV Inhibitors.
tion as potential therapeutic agents for the treatment of
asthma and chronic obstructive pulmonary disease (COPD),
and a number of these compounds have entered clinical
trials.10
a Conditions: (a) Activation. (b) Ethyl 4-pyridylacetate, LiN-
(SiMe3)2, THF, DMPU, -40 °C.
We sought to develop a practical methodology that would
allow access to a large number of racemic analogues of I
that also had the potential to be developed into an asymmetric
synthesis. We reasoned that a protocol based on nucleophilic
displacement of suitably activated benzhydryl alcohol deriva-
tives could provide access to a wide variety of 1,1-diaryl
substituted products in a minimal number of steps from
readily available, simple starting materials. With the excep-
tion of bromides and chlorides, the synthetic utility of
activated benzhydryl derivatives has received scant attention
in the literature. This may be a consequence of the general
expectation that diaryl-substituted electrophiles may be
exceedingly prone to ionization, racemization, and decom-
position and therefore not synthetically useful.
were previously demonstrated to be reasonably good sub-
strates for nucleophilic displacement with pyridinyl eno-
lates,9,11 our attempts to prepare chlorides and bromides from
the corresponding optically enriched alcohols were unsuc-
cessful because of extensive racemization during their
formation. Other activating groups were thus screened.
Phosphate leaving groups 2b (R) Et, i-Pr) could be readily
prepared but were unreactive toward lithium enolates.
Attempted preparation of methanesulfonate 2c using meth-
anesulfonyl chloride led exclusively to the corresponding
chloride, while use of methanesulfonic anhydride led to
decomposition of the starting benzhydrol. Similarly, attempts
In this communication, we describe our efforts to identify
a suitable leaving group and develop a synthetic methodology
(4) (a) Lynch, J. E.; Choi, W.-B.; Churchill, H. R. O.; Volante, R. P.;
Reamer, R. A.; Ball, R. G. J. Org. Chem. 1997, 62, 9223. (b) Aggarwal,
V. K.; Bae, I.; Lee, H.-Y.; Richardson, J.; Williams, D. T.; Angew. Chem.,
Int. Ed. 2003, 42, 3274.
Table 1. Displacement of Benzhydrol Toluenesulfonates with
Lithium Enolate of Ethyl 4-Pyridyl Acetatea
(5) Davies, H. M. L.; Stafford, D. G.; Hansen, T. Org. Lett. 1999, 2,
233.
(6) Corey, E. J.; Gant, G. T. Tetrahedron Lett. 1994, 35, 5373.
(7) (a) Frey, L. F.; Tillyer, R. D.; Caille, A.-S.; Tschaen, D. M.; Dolling,
U.-H.; Grabowski, E. J. J.; Reider, P. J. J. Org. Chem. 1998, 63, 3120. (b)
Xu, F.; Tillyer, R. D.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J.
Tetrahedron: Asymmetry 1998, 9, 1651. (c) Asano, Y.; Iida A.; Tomioka,
K. Chem. Pharm. Bull. 1998, 46, 184. (d) Houpis, I. N.; Lee, J.; Dorziotis,
I.; Molina, A.; Reamer, B.; Volante, R. P.; Reider, P. J. Tetrahedron 1998,
54, 1185.
(8) Alexander, R. P.; Warrellow, G. J.; Eaton, M. A. W.; Boyd, E. C.;
Head, J. C.; Porter, J. R.; Brown, J. A.; Reuberson, J. T.; Hutchinson, B.;
Turner, P.; Boyce, B.; Barnes, D.; Mason, B.; Cannell, A.; Taylor, R. J.;
Zomaya, A.; Millican, A.; Leonard, J.; Morphy, R.; Wales, M.; Perry, M.;
Allen, R. A.; Gozzard, N.; Hughes, B.; Higgs, G. Bioorg. Med. Chem. Lett.
2002, 12, 1451.
(9) Guay, D.; Hamel, P.; Blouin, M.; Brideau, C.; Chan, C. C.; Chauret,
N.; Ducharme, Y.; Huang, Z.; Girard, M.; Jones, T. R.; Laliberte´, F.;
Masson, P.; McAuliffe, M.; Piechuta, H.; Silva, J.; Young, R. N.; Girard,
Y. Bioorg. Med. Chem. Lett. 2002, 12, 1457.
(10) (a) Huang, Z.; Ducharme, Y.; MacDonald, D.; Robichaud, A. Curr.
Opin. Chem. Biol. 2001, 5, 432. (b) Martin, T. J. IDrugs 2001, 4, 312. (c)
Nell, H.; Louw, C.; Leichtl, S.; Rathgeb, F.; Neuhauser, M.; Bardin, P. G.
Am. J. Respir. Crit. Care Med. 2000, 161, A200. (d) Timmer, W.; Leclerc,
V.; Birraux, G.; Neuhauser, M.; Hatzelmann, A.; Bethke, T.; Wurst, W.
Am. J. Respir. Crit. Care Med. 2000, 161, A505.
entry
Ar
product
yield (%)
1
2
3
4
5
6
7
8
9
4-MeOC6H4
3-MeOC6H4
2-MeOC6H4
3,5-MeOC6H3
C6H5
4-CF3C6H4
3-CF3C6H4
2-CF3C6H4
3,5-CF3C6H3
3,4-MeOC6H3
3,4-HCF2OC6H3
5a
5b
5c
5d
5e
5f
5g
5h
5i
68
73
15
28
76
74
68
<5
94
<5
73
10
11
5j
5k
a Conditions: (a) n-BuLi or LiN(SiMe3)2, THF, -78 °C; Ts2O, THF;
ethyl 4-pyridyl acetate, LiN(SiMe3)2, THF, DMPU, -40 °C.
112
Org. Lett., Vol. 6, No. 1, 2004